【題目】已知圓C:
和點
,P是圓上一點,線段BP的垂直平分線交CP于M點,則M點的軌跡方程為______;若直線l與M點的軌跡相交,且相交弦的中點為
,則直線l的方程是______.
【答案】
【解析】
根據(jù)線段中垂線的性質(zhì)可得,
,又
半徑,故有
,根據(jù)橢圓的定義判斷軌跡橢圓,求出
值,即得橢圓的標(biāo)準方程
設(shè)出直線與橢圓的兩個交點A,B的坐標(biāo)及AB的中點的坐標(biāo),利用點差法結(jié)合直線斜率,然后得到直線方程.
由圓的方程可知,圓心
,半徑等于
,設(shè)點M的坐標(biāo)為
,
的垂直平分線交CQ于點M,
又
半徑
,
依據(jù)橢圓的定義可得,點M的軌跡是以B、C為焦點的橢圓,且
,
,
,
故橢圓方程為
,
設(shè)直線l交橢圓與
,
兩點,AB的中點為
,
,
,
則
,
,
作差得:
,
,
直線l的方程是:
,即:
.
故答案為:
,
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某河流在一段時間x min內(nèi)流過的水量為y m3,y是x的函數(shù),y=f(x)=
.
(1)當(dāng)x從1變到8時,y關(guān)于x的平均變化率是多少?它代表什么實際意義?
(2)求f′(27)并解釋它的實際意義.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:
(a>b>0)的一個焦點與拋物線
的焦點相同,F(xiàn)1 , F2為橢圓的左、右焦點.M為橢圓上任意一點,△MF1F2面積的最大值為4
.![]()
(1)求橢圓C的方程;
(2)設(shè)橢圓C上的任意一點N(x0 , y0),從原點O向圓N:(x﹣x0)2+(y﹣y0)2=3作兩條切線,分別交橢圓于A,B兩點.試探究|OA|2+|OB|2是否為定值,若是,求出其值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,且(c﹣2a)
=c
![]()
(1)求B的大;
(2)已知f(x)=cosx(asinx﹣2cosx)+1,若對任意的x∈R,都有f(x)≤f(B),求函數(shù)f(x)的單調(diào)遞減區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐
中,底面
是邊長為
的正方形,側(cè)棱
底面
,且側(cè)棱
的長是
,點
分別是
的中點.
![]()
(Ⅰ)證明:
平面
;
(Ⅱ)求三棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=2x﹣cosx,{an}是公差為
的等差數(shù)列,f(a1)+f(a2)+…+f(a5)=5π,則[f(a3)]2﹣a1a5=
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知點A(0,0),B(4,3),若A,B,C三點按順時針方向排列構(gòu)成等邊三角形ABC,且直線BC與x軸交于點D.
(1)求cos∠CAD的值;
(2)求點C的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的各項均為正整數(shù),其前n項和為Sn , an+1=
,若S3=10,則S180=( )
A.600或900
B.900或560
C.900
D.600
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)設(shè)關(guān)于
的一元二次方程
,若
是從
這四個數(shù)中任取的一個數(shù),
是從
這三個數(shù)中任取的一個數(shù),求上述方程有實數(shù)根的概率.
(2)王小一和王小二約定周天下午在銀川大閱城四樓運動街區(qū)見面,約定5:00—6:00見面,先到的等另一人半小時,沒來就可以先走了,假設(shè)他們在自己估計時間內(nèi)到達的可能性相等,求他們兩個能相遇的概率有多大?
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com