(本題滿分12分)
已知函數(shù)
,其中
為實(shí)數(shù).
(Ⅰ)當(dāng)
時,求曲線
在點(diǎn)
處的切線方程;
(Ⅱ)是否存在實(shí)數(shù)
,使得對任意
,
恒成立?若不存在,請說明理由,若存在,求出
的值并加以證明.
(Ⅰ) ![]()
(Ⅱ) 存在實(shí)數(shù)
,使得對任意
,
恒成立
【解析】本試題主要是考查了導(dǎo)數(shù)的幾何意義的運(yùn)用,以及運(yùn)用導(dǎo)數(shù)求解函數(shù)的 最值綜合運(yùn)用。
(1)由已知關(guān)系式得到函數(shù)的定義域,然后把a(bǔ)=2代入原式中,求解函數(shù)的導(dǎo)數(shù),利用函數(shù)在某點(diǎn)處的導(dǎo)數(shù)值即為該點(diǎn)的切線的斜率來求解得到切線方程。
(2)由于要是不等式恒成立,需要對原式進(jìn)行變形,將分式轉(zhuǎn)化為整式,然后構(gòu)造函數(shù)求解最值得到參數(shù)的范圍。
解:(Ⅰ)
時,
,
,
,
又![]()
所以切線方程為
………6分
(Ⅱ)1°當(dāng)
時,
,則![]()
![]()
令
,
,
再令
,![]()
當(dāng)
時
,∴
在
上遞減,
∴當(dāng)
時,
,
∴
,所以
在
上遞增,
,
所以![]()
2°
時,
,則![]()
![]()
![]()
由1°知當(dāng)
時
,
在
上遞增
當(dāng)
時,
,![]()
所以
在
上遞增,∴![]()
∴
;
由1°及2°得:
………12分
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
| π | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分12分)已知數(shù)列
是首項為
,公比
的等比數(shù)列,,
設(shè)
,數(shù)列
.
(1)求數(shù)列
的通項公式;(2)求數(shù)列
的前n項和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年上海市金山區(qū)高三上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分12分,第1小題6分,第2小題6分)
已知集合A={x| | x–a | < 2,xÎR
},B={x|
<1,xÎR }.
(1) 求A、B;
(2) 若
,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年安徽省高三10月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分12分)
設(shè)函數(shù)
(
,
為常數(shù)),且方程
有兩個實(shí)根為
.
(1)求
的解析式;
(2)證明:曲線
的圖像是一個中心對稱圖形,并求其對稱中心.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年重慶市高三第二次月考文科數(shù)學(xué) 題型:解答題
(本題滿分12分,(Ⅰ)小問4分,(Ⅱ)小問6分,(Ⅲ)小問2分.)
如圖所示,直二面角
中,四邊形
是邊長為
的正方形,
,
為
上的點(diǎn),且
⊥平面![]()
(Ⅰ)求證:
⊥平面![]()
(Ⅱ)求二面角
的大。
(Ⅲ)求點(diǎn)
到平面
的距離.
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com