【題目】在平面直角坐標(biāo)系
中,已知直線
過點(diǎn)
且傾斜角為
,以坐標(biāo)原點(diǎn)
為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系,若曲線
的極坐標(biāo)方程為
,且直線
與曲線
相交于
,
兩點(diǎn).
(1)寫出曲線
的直角坐標(biāo)方程和直線
的參數(shù)方程;
(2)若
,求直線
的直角坐標(biāo)方程.
【答案】(1)
的直角坐標(biāo)方程
,
的參數(shù)方程為
(
為參數(shù));(2)
或
.
【解析】
(1)根據(jù)直線參數(shù)方程的形式
(
為參數(shù)),以及
,可得結(jié)果.
(2)將直線的參數(shù)方程代入曲線
的直角坐標(biāo)方程,可得關(guān)于
的一個(gè)一元二次方程,結(jié)合韋達(dá)定理,進(jìn)行計(jì)算,可得結(jié)果.
(1)由直線
過點(diǎn)
且傾斜角為
,
得直線
的參數(shù)方程為
(
為參數(shù));
由
,則
,
因?yàn)?/span>
,
所以曲線
的直角坐標(biāo)方程
.
(2)將直線
的參數(shù)方程為![]()
代入曲線
的直角坐標(biāo)方程
得
,
記
,
所對(duì)應(yīng)的參數(shù)分別為
,
,
由
得
,
因?yàn)?/span>![]()
所以
消去![]()
得
,
化簡得
,
則
或
,
故直線
的直角坐標(biāo)方程為
或
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)若曲線
過點(diǎn)
,求曲線
在點(diǎn)
處的切線方程;
(2)求函數(shù)
在區(qū)間
上的最大值;
(3)若函數(shù)
有兩個(gè)不同的零點(diǎn)
,
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且acosC+ccosA=2bcosA.
(1)求角A的值;
(2)若
,
,求△ABC的面積S.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,其中
.
(Ⅰ)函數(shù)
的圖象能否與
軸相切?若能,求出實(shí)數(shù)a,若不能,請(qǐng)說明理由;
(Ⅱ)求最大的整數(shù)
,使得對(duì)任意
,不等式![]()
恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱ABC-A1B1C1中,D,E分別為AB,BC的中點(diǎn),點(diǎn)F在側(cè)棱B1B上,且
,
.
![]()
求證:(1)直線DE
平面A1C1F;
(2)平面B1DE⊥平面A1C1F.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系
中,
為拋物線
上不同的兩點(diǎn),且
,點(diǎn)![]()
且
于點(diǎn)
.
(1)求
的值;
(2)過
軸上一點(diǎn)
的直線
交
于
,
兩點(diǎn),
在
的準(zhǔn)線上的射影分別為
,
為
的焦點(diǎn),若
,求
中點(diǎn)
的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,是一個(gè)半圓柱與多面體
構(gòu)成的幾何體,平面
與半圓柱的下底面共面,且
,
為弧
上(不與
重合)的動(dòng)點(diǎn).
![]()
(1)證明:
平面
;
(2)若四邊形
為正方形,且
,
,求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)min{m,n}表示m,n二者中較小的一個(gè),已知函數(shù)f(x)=x2+8x+14,g(x)=
(x>0),若x1∈[-5,a](a≥-4),x2∈(0,+∞),使得f(x1)=g(x2)成立,則a的最大值為
A.-4B.-3C.-2D.0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于圓周率
,數(shù)學(xué)發(fā)展史上出現(xiàn)過許多有創(chuàng)意的求法,如著名的普豐實(shí)驗(yàn)和查理斯實(shí)驗(yàn).受其啟發(fā),我們也可以通過設(shè)計(jì)下面的實(shí)驗(yàn)來估計(jì)
的值:先請(qǐng)120名同學(xué)每人隨機(jī)寫下一個(gè)x,y都小于1的正實(shí)數(shù)對(duì)
,再統(tǒng)計(jì)其中x,y能與1構(gòu)成鈍角三角形三邊的數(shù)對(duì)
的個(gè)數(shù)m,最后根據(jù)統(tǒng)計(jì)個(gè)數(shù)m估計(jì)
的值.如果統(tǒng)計(jì)結(jié)果是
,那么可以估計(jì)
的值為( )
A.
B.
C.
D.![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com