分析:(1)由
Sn=2an-2(n∈N*),可得當(dāng)n≥2時(shí),S
n-1=2a
n-1-2,兩式相減可得a
n=2a
n-1,從而可知數(shù)列{a
n}是以2為首項(xiàng),2為公比的等比數(shù)列,故可得a
n=2
n;根據(jù)
bn+1=,兩邊取倒數(shù),可得數(shù)列
{}是以1為首項(xiàng),2為公差的等差數(shù)列,從而可求{b
n}的通項(xiàng)
(2)
cn== (2n-1)2n,所以數(shù)列{c
n}的前n項(xiàng)和T
n=c
1+c
2+…+c
n=1×2+3×2
2+…+(2n-1)×2
n,利用錯(cuò)位相減法可求數(shù)列{c
n}的前n項(xiàng)和
(3)
hn==
(2n-1)()n,可判斷n=1,2時(shí),h
n+1>h
n;n≥3時(shí),h
n+1<h
n,故n=3時(shí),h
n取得最大值
,從而可求λ的取值范圍.
解答:解:(1)由
Sn=2an-2(n∈N*),可得當(dāng)n≥2時(shí),S
n-1=2a
n-1-2
兩式相減可得:a
n=2a
n-2a
n-1∴a
n=2a
n-1∴
=2(n≥2)
∵n=1時(shí),S
1=2a
1-2,∴a
1=2
∴數(shù)列{a
n}是以2為首項(xiàng),2為公比的等比數(shù)列
∴a
n=2
n∵
bn+1=∴
-=2∵b
1=1,∴
=1∴數(shù)列
{}是以1為首項(xiàng),2為公差的等差數(shù)列
∴
=1+2(n-1)=2n-1∴
bn=(2)
cn== (2n-1)2n∴數(shù)列{c
n}的前n項(xiàng)和T
n=c
1+c
2+…+c
n=1×2+3×2
2+…+(2n-1)×2
n①
∴2T
n=1×2
2+3×2
3+…+(2n-3)×2
n+(2n-1)×2
n+1②
①-②可得:-T
n=1×2+2×2
2+2×2
3+…+2×2
n-(2n-1)×2
n+1=-6+2
n+2-(2n-1)×2
n+1∴T
n=6-2
n+2+(2n-1)×2
n+1;
(3)
hn==
(2n-1)()n∴
hn+1-hn= (2n+1)()n+1-
(2n-1)()n=
()n(-n+)∴n=1,2時(shí),h
n+1>h
n;n≥3時(shí),h
n+1<h
n∴n=3時(shí),h
n取得最大值
∵對(duì)于一切n∈N
*,有λ>h
n恒成立,
∴
λ>,
∴λ的取值范圍為
(,+∞).
點(diǎn)評(píng):本題綜合考查等差數(shù)列與等比數(shù)列,考查數(shù)列的通項(xiàng),考查錯(cuò)位相減法求數(shù)列的和,考查恒成立問(wèn)題,解題的關(guān)鍵是研究數(shù)列通項(xiàng)的特點(diǎn),有針對(duì)性的選擇方法.