已知函數(shù)
,設(shè)![]()
(1)求
的單調(diào)區(qū)間;
(2)若以
圖象上任意一點
為切點的切線的斜率
恒成立,求實數(shù)
的最小值;
(3)是否存在實數(shù)
,使得函數(shù)
的圖象與
的圖象恰好有四個不同的交點?若存在,求出
的取值范圍,若不存在,說明理由。
科目:高中數(shù)學(xué) 來源: 題型:解答題
函數(shù)
的定義域為
,且滿足對于定義域內(nèi)任意的
都有等式
.
(1)求
的值;
(2)判斷
的奇偶性并證明;
(3)若
,且
在
上是增函數(shù),解關(guān)于
的不等式
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,函數(shù)
的圖象與
軸相交于點
,且該函數(shù)的最小正周期為
.![]()
(1)、求
和
的值;
(2)、已知點
,點
是該函數(shù)圖象上一點,
點
是
的中點,當(dāng)
,
時,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
對于區(qū)間
上有意義的兩個函數(shù)
如果有任意![]()
,均有
則稱
與
在
上是接近的,否則稱
與
在
上是非接近的.現(xiàn)有兩個函數(shù)
與
給定區(qū)間
, 討論
與
在給定區(qū)間
上是否是接近的.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)![]()
(1)求
,并求數(shù)列
的通項公式.
(2)已知函數(shù)
在
上為減函數(shù),設(shè)數(shù)列
的前
的和為
,
求證:![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,其中
。
(1)當(dāng)a=1時,求它的單調(diào)區(qū)間;
(2)當(dāng)
時,討論它的單調(diào)性;
(3)若
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(a,b為常數(shù))且方程f(x)-x+12=0有兩個實根為x1="3," x2=4.
(1)求函數(shù)f(x)的解析式;
(2)設(shè)
,解關(guān)于x的不等式;
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,當(dāng)
時函數(shù)
取得一個極值,其中
.
(Ⅰ)求
與
的關(guān)系式;
(Ⅱ)求
的單調(diào)區(qū)間;
(Ⅲ)當(dāng)
時,函數(shù)
的圖象上任意一點的切線的斜率恒大于
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)f (x)的定義域為M,具有性質(zhì)P:對任意x∈M,都有f (x)+f (x+2)≤2f (x+1).
(1)若M為實數(shù)集R,是否存在函數(shù)f (x)=ax (a>0且a≠1,x∈R) 具有性質(zhì)P,并說明理由;
(2)若M為自然數(shù)集N,并滿足對任意x∈M,都有f (x)∈N. 記d(x)=f (x+1)-f (x).
(ⅰ) 求證:對任意x∈M,都有d(x+1)≤d(x)且d(x)≥0;
(ⅱ) 求證:存在整數(shù)0≤c≤d(1)及無窮多個正整數(shù)n,滿足d(n)=c.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com