欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

19.求下列曲線的標準方程:
(1)與橢圓$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{4}$=1有相同的焦點,直線y=$\sqrt{3}$x為一條漸近線.求雙曲線C的方程.
(2)焦點在直線3x-4y-12=0 的拋物線的標準方程.

分析 (1)由橢圓方程求出雙曲線的焦點坐標,設出以直線y=$\sqrt{3}$x為一條漸近線的雙曲線方程${x}^{2}-\frac{{y}^{2}}{3}=λ$(λ>0),然后結(jié)合焦點坐標求得λ,則曲線方程可求;
(2)求出直線在兩坐標軸上的截距,然后直接分類代入拋物線方程得答案.

解答 解:(1)由橢圓$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{4}$=1,得a2=8,b2=4,
∴c2=a2-b2=4,則焦點坐標為F(2,0),
∵直線y=$\sqrt{3}$x為雙曲線的一條漸近線,
∴設雙曲線方程為${x}^{2}-\frac{{y}^{2}}{3}=λ$(λ>0),
即$\frac{{x}^{2}}{λ}-\frac{{y}^{2}}{3λ}=1$,則λ+3λ=4,λ=1.
∴雙曲線方程為:${x}^{2}-\frac{{y}^{2}}{3}=1$;
(2)由3x-4y-12=0,得$\frac{x}{4}-\frac{y}{3}=1$,
∴直線在兩坐標軸上的截距分別為(4,0),(0,-3),
∴分別以(4,0),(0,-3)為焦點的拋物線方程為:
y2=16x或x2=-12y.

點評 本題考查橢圓方程和拋物線方程的求法,對于(1)的求解,設出以直線$y=±\frac{a}x$為一條漸近線的雙曲線方程是關鍵,是中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

9.在空間直角坐標系中,平面α的法向量$\overrightarrow n=(1,2,3)$,點O(0,0,0)在平面α內(nèi),點P(1,0,-1),則點P到平面α的距離為( 。
A.$\frac{{\sqrt{7}}}{7}$B.$\frac{{\sqrt{14}}}{14}$C.$\frac{{\sqrt{7}}}{14}$D.$\frac{{\sqrt{14}}}{7}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.某城市的夏季室外溫度y(℃)的波動近似地按照規(guī)則$y=27+10sin({\frac{π}{12}t+π})$,其中t(h)是從某日0點開始計算的時間,且t≤24.
(1)若在t0(h)(t0≤6)時的該城市室外溫度為22°C,求在t0+8(h)時的城市室外溫度;
(2)某名運動員要在這個時候到該城市參加一項比賽,比賽在當天的10時至16時進行,而該運動員一旦到室外溫度超過36°C的地方就會影響正常發(fā)揮,試問該運動員會不會因為氣溫影響而不能正常發(fā)揮?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.在△ABC中,若$\frac{sinC}{sinA}$=3,b2-a2=$\frac{5}{2}$ac,則cosB的值為$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.計劃在某水庫建一座至多安裝3臺發(fā)電機的水電站,過去50年的水文資料顯示,水年入流量X(年入流量:一年內(nèi)上游來水與庫區(qū)降水之和,單位:億立方米)都在40以上,其中,不足80的年份有10年,不低于80且不超過120的年份有35年,超過120的年份有5年,將年入流量在以上三段的頻率作為相應段的概率,并假設各年的年入流量相互獨立.
(1)求未來4年中,至多有1年的年入流量超過120的概率.
(2)水電站希望安裝的發(fā)電機盡可能運行,但每年發(fā)電機最多可運行臺數(shù)受年入流量X限制,并有如下關系:
年入流量X40<X<8080≤X≤120X>120
發(fā)電機最多
可運行臺數(shù)
123
若某臺發(fā)電機運行,則該臺年利潤為1000萬元;若某臺發(fā)電機未運行,則該臺年虧損160萬元,欲使水電站年總利潤的均值達到最大,應安裝發(fā)電機多少臺?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知|$\overrightarrow a|=4,|\overrightarrow b|=3,(2\overrightarrow a-3\overrightarrow b)•(2\overrightarrow a+\overrightarrow b)=61$.
(1)求$\overrightarrow a$與$\overrightarrow b$的夾角θ;
(2)若$\vec c=t\vec a+(1-t)\vec b$,且$\vec b•\vec c=0$,求$|{\vec c}$|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知函f(x)=$\left\{\begin{array}{l}{-{x}^{3}+{x}^{2}+bx+c,x<1}\\{alnx,x≥1}\end{array}\right.$的圖象過坐標原點O,且在(-1,f(-1))處
的切線的斜率是-5.
(Ⅰ)求實b、c的值;
(Ⅱ)f(x)在區(qū)[-1,2]上的最大值;
(Ⅲ)對任意給定的正實a,曲y=f(x)上是否存在兩點P、Q,使得△POQ是以O為直角頂點的直角三角形,且此三角形斜邊中點y軸上?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知角α終邊上一點$P({-3,b}),sinα=\frac{5}$.
(1)求tanα的值;
(2)設$f(α)=\frac{{sin({{{540}°}-α})cos({{{270}°}-α})cos({{{180}°}+α})}}{{tan({{{900}°}-α})sin({{{810}°}+α})sin({-α})}}$,試求f(α)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知正方體ABCD-A1B1C1D1,O是底ABCD對角線的交點.
(1)求異面直線AD1與BD所成的角
(2)求證:C1O∥面AB1D1

查看答案和解析>>

同步練習冊答案