【題目】微信是現(xiàn)代生活進行信息交流的重要工具,據(jù)統(tǒng)計,某公司
名員工中
的人使用微信,其中每天使用微信時間在一小時以內的有
人,其余每天使用微信在一小時以上.若將員工年齡分成青年(年齡小于
歲)和中年(年齡不小于
歲)兩個階段,使用微信的人中
是青年人.若規(guī)定:每天使用微信時間在一小時以上為經(jīng)常使用微信,經(jīng)常使用微信的員工中
是青年人.
(Ⅰ)若要調查該公司使用微信的員工經(jīng)常使用微信與年齡的關系,列出
列聯(lián)表;
青年人 | 中年人 | 合計 | |
經(jīng)常使用微信 | |||
不經(jīng)常使用微信 | |||
合計 |
(Ⅱ)由列聯(lián)表中所得數(shù)據(jù),是否有
的把握認為“經(jīng)常使用微信與年齡有關”?
(Ⅲ)采用分層抽樣的方法從“經(jīng)常使用微信”的人中抽取
人,從這
人中任選
人,求事件
“選出的
人均是青年人”的概率.
附:![]()
|
|
|
|
|
|
【答案】(I)180人;(II)有
的把握認為“經(jīng)常使用微信與年齡有關”;(III)
.
【解析】試題分析:(I)由已知可得
的列聯(lián)表;(II)將列聯(lián)表中數(shù)據(jù)代入公式可得
,與臨界值比較,即得出結論;(III)利用列舉法確定基本事件,即可求出事件A“選出的
人均是青年人”的概率.
試題解析:(Ⅰ)由已知可得,該公司員工中使用微信的共:
人
經(jīng)常使用微信的有
人,其中青年人:
人
所以可列下面
列聯(lián)表:
青年人 | 中年人 | 合計 | |
經(jīng)常使用微信 | 80 | 40 | 120 |
不經(jīng)常使用微信 | 55 | 5 | 60 |
合計 | 135 | 45 | 180 |
(Ⅱ)將列聯(lián)表中數(shù)據(jù)代入公式可得:
![]()
由于
,所以有
的把握認為“經(jīng)常使用微信與年齡有關”.
(Ⅲ)從“經(jīng)常使用微信”的人中抽取6人中,青年人有
人,中年人有2人
設4名青年人編號分別1,2,3,4,2名中年人編號分別為5,6,
則“從這6人中任選2人”的基本事件為:
(1,2)(1,3)(1,4)(1,5)(1,6)(2,3)(2,4)(2,5)(2,6)(3,4)(3,5)
(3,6)(4,5)(4,6)(5,6)共15個
其中事件A“選出的2人均是青年人”的基本事件為:(1,2)(1,3)(1,4)(2,3)
(2,4)(3,4)共6個.故
.
科目:高中數(shù)學 來源: 題型:
【題目】某幾何體的三視圖如圖所示,且該幾何體的體積是3,則正視圖的
的值__________.
![]()
【答案】3
【解析】 由已知中的三視圖可得該幾何體是一個以直角梯形為底面,梯形上下邊長為
和
,高為
,
如圖所示,
平面
,
所以底面積為
,
幾何體的高為
,所以其體積為
.
![]()
點睛:在由三視圖還原為空間幾何體的實際形狀時,要從三個視圖綜合考慮,根據(jù)三視圖的規(guī)則,空間幾何體的可見輪廓線在三視圖中為實線,不可見輪廓線在三視圖中為虛線.在還原空間幾何體實際形狀時,一般是以正視圖和俯視圖為主,結合側視圖進行綜合考慮.求解以三視圖為載體的空間幾何體的體積的關鍵是由三視圖確定直觀圖的形狀以及直觀圖中線面的位置關系和數(shù)量關系,利用相應體積公式求解.
【題型】填空題
【結束】
16
【題目】已知橢圓
:
的右焦點為
,
為直線
上一點,線段
交
于點
,若
,則
__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓
的短軸長為2,離心率為![]()
(1)求橢圓C的方程;
(2)設過點M(2,0)的直線l與橢圓C相交于A,B兩點,F(xiàn)1為橢圓的左焦點.
①若B點關于x軸的對稱點是N,證明:直線AN恒過一定點;
②試求橢圓C上是否存在點P,使F1APB為平行四邊形?若存在,求出F1APB的面積,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】天氣預報說,在今后的三天中,每一天下雨的概率均為
,某同學用隨機模擬的方法確定這三天中恰有兩天下雨的概率,該同學利用計算器可以產生0到9之間的取整數(shù)值的隨機數(shù),他用1,4,7表示下雨,用0,2,3,5,6,8,9表示不下雨。實驗得出如下20組隨機數(shù):
245,368,590,126,217,895,560,061,378,902
542,751,245,602,156,035,682,148,357,438
請根據(jù)該同學實驗的數(shù)據(jù)確定這三天中恰有兩天下雨的概率為 __________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x﹣2sinx.
(Ⅰ)求函數(shù)f(x)在
上的最值;
(Ⅱ)若存在
,使得不等式f(x)<ax成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】比較下列各組數(shù)的大。
(1)log0.7 1.3和log0.71.8;
(2)log35和log64;
(3)(lgn)1.7和(lgn)2 (n>1).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對函數(shù)f(x)=
,若a,b,c∈R,f(a),f(b),f(c)都為某個三角形的三邊長,則實數(shù)m的取值范圍是( )
A.(
,6)
B.(
,6)
C.(
,5)
D.(
,5)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)
的圖象與
軸交于點
,周期是
.
(1)求函數(shù)解析式,并寫出函數(shù)圖象的對稱軸方程和對稱中心;
(2)已知點
,點
是該函數(shù)圖象上一點,點
是
的中點,當
,
時,求
的值.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com