(05年福建卷)(12分)
已知方向向量為
的直線l過點(diǎn)(0,-2
)和橢圓C:
的焦點(diǎn),且橢圓C的中心關(guān)于直線l的對稱點(diǎn)在橢圓C的右準(zhǔn)線上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)是否存在過點(diǎn)E(-2,0)的直線m交橢圓C于點(diǎn)M、N,滿足
,
cot∠MON≠0(O為原點(diǎn)).若存在,求直線m的方程;若不存在,請說明理由.
![]()
解析:(Ⅰ)由題意可得直線ι:
, ①
過原點(diǎn)垂直ι的方程為
②
解①②得x=
.∵橢圓中心O(0,0)關(guān)于直線ι的對稱點(diǎn)在橢圓C的右準(zhǔn)線上,
∴
.∵直線ι過橢圓焦點(diǎn),∴該焦點(diǎn)坐標(biāo)為(2,0).
∴a2=6,c=2,b2=2,故橢圓C的方程為
. ③
(Ⅱ)設(shè)M(x1,y1),N(x2,y2),當(dāng)直線m不垂直x軸時,直線m:y=k(x+2)代入③,整理得
(3k2+1)x2+12k2x+12k2-6=0,則x1+x2=
,x1x2=
,
|MN|=![]()
點(diǎn)O到直線MN的距離d=
.∵
cot∠MON,即
,
∴
,∴
,
![]()
![]()
即
.整理得
.
當(dāng)直線m垂直x軸時,也滿足![]()
故直線m的方程為
或y=
或x=-2.
經(jīng)檢驗上述直線均滿足
.
所在所求直線方程為
或y=
或x=-2..
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(09年江蘇百校樣本分析)(10分)挑選空軍飛行學(xué)員可以說是“萬里挑一”,要想通過需過“五關(guān)”――目測、初檢、復(fù)檢、文考、政審等. 某校甲、乙、丙三個同學(xué)都順利通過了前兩關(guān),有望成為光榮的空軍飛行學(xué)員. 根據(jù)分析,甲、乙、丙三個同學(xué)能通過復(fù)檢關(guān)的概率分別是0.5,0.6,0.75,能通過文考關(guān)的概率分別是0.6,0.5,0.4,通過政審關(guān)的概率均為1.后三關(guān)相互獨(dú)立.
(1)求甲、乙、丙三個同學(xué)中恰有一人通過復(fù)檢的概率;
(2)設(shè)通過最后三關(guān)后,能被錄取的人數(shù)為
,求隨機(jī)變量
的期望
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(09年江蘇百校樣本分析)(10分)(矩陣與變換) 給定矩陣 A=
,
=
.
(1)求A的特征值
、
及對應(yīng)的特征向量
;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(08年莆田四中一模理) (14分)
由函數(shù)
確定數(shù)列
,
,若函數(shù)
的反函數(shù)
能確定數(shù)列
,
,則稱數(shù)列
是數(shù)列
的“反數(shù)列”。
(1)若函數(shù)
確定數(shù)列
的反數(shù)列為
,求
的通項公式;
(2)對(1)中
,不等式
對任意的正整數(shù)
恒成立,求實數(shù)
的范圍;
(3)設(shè)
,若數(shù)列
的反數(shù)列為
,
與
的公共項組成的數(shù)列為
;求數(shù)列
前
項和![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(05年遼寧卷)(12分)
已知函數(shù)
.設(shè)數(shù)列
滿足
,
,數(shù)列
滿足
,
…
,
(Ⅰ)用數(shù)學(xué)歸納法證明
;(Ⅱ)證明
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(05年湖北卷文)(12分)
設(shè)數(shù)列
的前n項和為Sn=2n2,
為等比數(shù)列,且![]()
(Ⅰ)求數(shù)列
和
的通項公式;
(Ⅱ)設(shè)
,求數(shù)列
的前n項和Tn.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com