(本題滿分13分)已知
是定義在
上的奇函數(shù),當(dāng)
時(shí),![]()
(1)求
的解析式;
(2)是否存在負(fù)實(shí)數(shù)
,使得當(dāng)
的最小值是4?如果存在,求出
的值;如果不存在,請(qǐng)說(shuō)明理由。
(3)對(duì)
如果函數(shù)
的圖像在函數(shù)
的圖像的下方,則稱函數(shù)
在D上被函數(shù)
覆蓋。求證:若
時(shí),函數(shù)
在區(qū)間
上被函數(shù)
覆蓋。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分14分)
已知函數(shù)![]()
.
(1)討論函數(shù)
在定義域內(nèi)的極值點(diǎn)的個(gè)數(shù);
(2)若函數(shù)
在
處取得極值,對(duì)![]()
,
恒成立,
求實(shí)數(shù)
的取值范圍;
(3)當(dāng)
時(shí),求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知實(shí)數(shù)a滿足1<a≤2,設(shè)函數(shù)f (x)=
x3-
x2+ax.
(Ⅰ) 當(dāng)a=2時(shí),求f (x)的極小值;
(Ⅱ) 若函數(shù)g(x)=4x3+3bx2-6(b+2)x (b∈R) 的極小值點(diǎn)與f (x)的極小值點(diǎn)相同,
求證:g(x)的極大值小于等于10.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分15分)已知函數(shù)![]()
(1)若函數(shù)
在
上為增函數(shù),求實(shí)數(shù)
的取值范圍;
(2)當(dāng)
時(shí),求
在
上的最大值和最小值;
(3)當(dāng)
時(shí),求證對(duì)任意大于1的正整數(shù)
,
恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
.
(Ⅰ)當(dāng)
時(shí),如果函數(shù)
僅有一個(gè)零點(diǎn),求實(shí)數(shù)
的取值范圍;
(Ⅱ)當(dāng)
時(shí),試比較
與1的大;
(Ⅲ)求證:![]()
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分14分)
已知
函數(shù)![]()
(Ⅰ)求
的最小值;
(Ⅱ)若
在
上為單調(diào)增函數(shù),求實(shí)數(shù)
的取值范圍;
(Ⅲ)證明:
…
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分15分)已知函數(shù)
(
)
(Ⅰ)討論
的單調(diào)性;
(Ⅱ)當(dāng)
時(shí),設(shè)
,若存在
,![]()
,使
,
求實(shí)數(shù)
的取值范圍。
為自然對(duì)數(shù)的底數(shù),![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)![]()
.
(1)討論函數(shù)
在定義域內(nèi)的極值點(diǎn)的個(gè)數(shù);
(2)若函數(shù)
在
處取得極值,對(duì)![]()
,
恒成立,
求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分14分) 設(shè)函數(shù)f (x)=ln x+
在(0,
) 內(nèi)有極值.
(Ⅰ) 求實(shí)數(shù)a的取值范圍;
(Ⅱ) 若x1∈(0,1),x2∈(1,+
).求證:f (x2)-f (x1)>e+2-
.
注:e是自然對(duì)數(shù)的底數(shù).
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com