已知數(shù)列
滿足
,
,
.
(1)若
成等比數(shù)列,求
的值;
(2)是否存在
,使數(shù)列
為等差數(shù)列?若存在,求出所有這樣的
;若不存在,說明理由.
(1)
;(2)存在,當(dāng)a1=1時(shí),數(shù)列{an}為等差數(shù)列.
【解析】
試題分析:(1)首先利用遞推公式把
都用
表示,再根據(jù)
成等比數(shù)列,列方程解出
的值.(2)對于這類開放性問題,處理的策略就是先假設(shè)存在a1,使數(shù)列{an}為等差數(shù)列,與(1)類似,根據(jù)
成等差數(shù)列,有
,從面得到關(guān)于
的方程,方程若有解則存在,否則可認(rèn)為不存在a1,使數(shù)列{an}為等差數(shù)列.
試題解析:(1)∵0<a1<2,
∴a2=2-|a1|=2-a1,a3=2-|a2|=2-|2-a1|=2-(2-a1)=a1.
∵a1,a2,a3成等比數(shù)列,
∴a22=a1a3,即(2-a1)2=a12,
解得a1=1. 6分
(2)假設(shè)這樣的等差數(shù)列存在,則
由2a2=a1+a3,得2(2-a1)=2a1,
解得a1=1.
從而an=1(n∈N*),此時(shí){an}是一個(gè)等差數(shù)列;
因此,當(dāng)且僅當(dāng)a1=1時(shí),數(shù)列{an}為等差數(shù)列. 12分
考點(diǎn):等差數(shù)列、等比數(shù)列的定義.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
| 3x-2 |
| 2x-1 |
| 1 |
| 2 |
| 1 |
| 2013 |
| 2 |
| 2013 |
| 3 |
| 2013 |
| 2012 |
| 2013 |
| 2n+1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
| n |
| 2 |
| n |
| an |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆度吉林省吉林市高二上學(xué)期期末理科數(shù)學(xué)試卷 題型:選擇題
已知數(shù)列
滿足
,則此數(shù)列的通項(xiàng)
等于
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆河北省高二第一學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷 題型:解答題
已知數(shù)列
滿足:
.
(Ⅰ)求
;
(Ⅱ)設(shè)
,求數(shù)列
的通項(xiàng)公式;
(Ⅲ)設(shè)
,不等式
恒成立時(shí),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com