分析 (1)由周期求出ω,由五點(diǎn)法作圖求出φ的值,可得函數(shù)的解析式.
(2)由條件利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,求得g(x)的解析式,再根據(jù)正弦函數(shù)的單調(diào)性,求得g(x)的單調(diào)遞增區(qū)間.
解答 解:(1)由條件利用
函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|>$\frac{π}{2}$)的部分圖象,
易知:$\frac{T}{4}=\frac{7π}{12}-\frac{π}{3}=\frac{π}{4}$,可得:ω=2,
所以,f(x)=sin(2x+φ),由五點(diǎn)法作圖可得2•$\frac{π}{3}$+φ=π,
求得$φ=\frac{π}{3}$,所以,$f(x)=sin({2x+\frac{π}{3}})$.
(2)將f(x)的圖象先向右平移$\frac{π}{3}$個(gè)單位,
可得y=sin[2(x-$\frac{π}{3}$)+$\frac{π}{3}$]=sin(2x-$\frac{π}{3}$)的圖象;
再將所得圖象的點(diǎn)縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉淼?\frac{1}{2}$,
可得$g(x)=sin({4x-\frac{π}{3}})$ 的圖象.
則由$4x-\frac{π}{3}∈({-\frac{π}{2}+2kπ,\frac{π}{2}+2kπ})$,
解得:$x∈({-\frac{π}{24}+\frac{kπ}{2},\frac{5π}{24}+\frac{kπ}{2}})$,
所以,g(x)的單調(diào)遞增區(qū)間為$({-\frac{π}{24}+\frac{kπ}{2},\frac{5π}{24}+\frac{kπ}{2}}),k∈Z$.
點(diǎn)評 本題主要考查由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,由周期求出ω,由五點(diǎn)法作圖求出φ的值,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)的單調(diào)性,屬于基礎(chǔ)題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | -2sin2x | B. | 2sin2x | C. | 2cos(2x-$\frac{π}{6}$) | D. | 2sin(2x-$\frac{π}{6}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | -1 | B. | 1 | C. | -2 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com