【題目】某學(xué)校為鼓勵家;,與某手機通訊商合作,為教師辦理流量套餐.為了解該校教師手機流量使用情況,通過抽樣,得到
位教師近
年每人手機月平均使用流量
(單位:
)的數(shù)據(jù),其頻率分布直方圖如下:
![]()
若將每位教師的手機月平均使用流量分別視為其手機月使用流量,并將頻率為概率,回答以下問題.
(Ⅰ) 從該校教師中隨機抽取
人,求這
人中至多有
人月使用流量不超過
的概率;
(Ⅱ) 現(xiàn)該通訊商推出三款流量套餐,詳情如下:
套餐名稱 | 月套餐費(單位:元) | 月套餐流量(單位: |
|
|
|
|
|
|
|
|
|
這三款套餐都有如下附加條款:套餐費月初一次性收取,手機使用一旦超出套餐流量,系統(tǒng)就自動幫用戶充值
流量,資費
元;如果又超出充值流量,系統(tǒng)就再次自動幫用戶充值
流量,資費
元/次,依次類推,如果當(dāng)月流量有剩余,系統(tǒng)將自動清零,無法轉(zhuǎn)入次月使用.
學(xué)校欲訂購其中一款流量套餐,為教師支付月套餐費,并承擔(dān)系統(tǒng)自動充值的流量資費的
,其余部分由教師個人承擔(dān),問學(xué)校訂購哪一款套餐最經(jīng)濟?說明理由.
【答案】(1)0.784.
(2) 學(xué)校訂購
套餐最經(jīng)濟.
【解析】
(Ⅰ)先求得該教師手機月使用流量不超過
的概率為
.
利用互斥事件的概率和獨立重復(fù)試驗的概率求這
人中至多有
人月使用流量不超過
的概率. (Ⅱ)先分別求出三種套餐的期望,再比較它們的大小即得解.
(Ⅰ)由直方圖可知,從該校中隨機抽取一名教師,該教師手機月使用流量不超過![]()
的概率為
.
設(shè)“從該校教師中隨機抽取
人,至多有
人月使用流量不超過
”為事件
,
則
.
(Ⅱ)依題意,
,
.
當(dāng)學(xué)校訂購
套餐時,設(shè)學(xué)校為一位教師承擔(dān)的月費用為
的所有可能取值為
,
,
,
且
,
,
,
所以
(元)
當(dāng)學(xué)校訂購
套餐時,設(shè)學(xué)校為一位教師承擔(dān)的月費用為
的所有可能取值為
,
,
且
,
,
所以
(元)
當(dāng)學(xué)校訂購
套餐時,設(shè)學(xué)校為一位教師承擔(dān)的月費用為
的所有可能取值為
,
且
,
(元)
因為
,所以學(xué)校訂購
套餐最經(jīng)濟.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在“五四青年節(jié)”到來之際,啟東中學(xué)將開展一系列的讀書教育活動.為了解高二學(xué)生讀書教育情況,決定采用分層抽樣的方法從高二年級
四個社團中隨機抽取12名學(xué)生參加問卷調(diào)査.已知各社團人數(shù)統(tǒng)計如下:
(1)若從參加問卷調(diào)查的12名學(xué)生中隨機抽取2名,求這2名學(xué)生來自同一個社團的概率;
(2)在參加問卷調(diào)查的12名學(xué)生中,從來自
三個社團的學(xué)生中隨機抽取3名,用
表示從
社團抽得學(xué)生的人數(shù),求
的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為調(diào)查乘客的候車情況,公交公司在某站臺的60名候車乘客中隨機抽取15人,將他們的候車時間(單位:分鐘)作為樣本分成5組,如表所示:
組別 | 候車時間 | 人數(shù) |
一 |
| 2 |
二 |
| 6 |
三 |
| 4 |
四 |
| 2 |
五 |
| 1 |
(1)估計這60名乘客中候車時間少于10分鐘的人數(shù);
(2)若從上表第三、四組的6人中隨機抽取2人作進(jìn)一步的問卷調(diào)查,求抽到的兩人恰好來自同一組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線y=x2+mx–2與x軸交于A,B兩點,點C的坐標(biāo)為(0,1).當(dāng)m變化時,解答下列問題:
(1)能否出現(xiàn)AC⊥BC的情況?說明理由;
(2)證明過A,B,C三點的圓在y軸上截得的弦長為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列有關(guān)命題的說法正確的是___(請?zhí)顚懰姓_的命題序號).
①命題“若
,則
”的否命題為:“若
,則
”;
②命題“若
,則
”的逆否命題為真命題;
③條件
,條件
,則
是
的充分不必要條件;
④已知
時,
,若
是銳角三角形,則
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】各項均為正數(shù)的數(shù)列
的前
項和為
,且滿足
,
,
.各項均為正數(shù)的等比數(shù)列
滿足
,
.
(1)求數(shù)列
、
的通項公式;
(2)若
,數(shù)列
的前
項和
.
①求
;
②若對任意
,
,均有
恒成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)
在如圖所示的多面體中,四邊形
和
都為矩形。
![]()
(Ⅰ)若
,證明:直線
平面
;
(Ⅱ)設(shè)
,
分別是線段
,
的中點,在線段
上是否存在一點
,使直線
平面
?請證明你的結(jié)論。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
設(shè)
是函數(shù)
的圖象上任意兩點,且
,已知點
的橫坐標(biāo)為
.
(1)求證:
點的縱坐標(biāo)為定值;
(2)若
求
;
(3)已知
=
,其中
,
為數(shù)列
的前
項和,若
對一切
都成立,試求
的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com