【題目】已知
,
都是各項(xiàng)為正數(shù)的數(shù)列,且
,
.對任意的正整數(shù)n,都有
,
,
成等差數(shù)列,
,
,
成等比數(shù)列.
(1)求數(shù)列
和
的通項(xiàng)公式;
(2)若存在p>0,使得集合M=
恰有一個元素,求實(shí)數(shù)
的取值范圍.
【答案】(1)an=
n(n+1),bn=
(n+1)(2)見解析
【解析】
(1)利用等差中項(xiàng)和等比中項(xiàng)的性質(zhì),列方程組,解方程求得公差和公比,由此求得數(shù)列
的通項(xiàng)公式.(2)構(gòu)造數(shù)列
,當(dāng)
時,利用數(shù)列
的單調(diào)性求得
的范圍;當(dāng)
或
時,不符合題意;當(dāng)
時,利用
的唯一最大值不小于
,求得
的取值范圍.最后綜上所述求得
的取值范圍.
解:(1)根據(jù)題意,2bn2=an+an+1 ①, an+1=bnbn+1 ②,
于是a2=3,b2=![]()
,2bn+12=an+1+an+2=bnbn+1+bn+1bn+2,
又因?yàn)?/span>bn>0,上式可化簡為:2bn+1=bn+bn+2對任意n∈N*恒成立,
所以數(shù)列{bn}是以b1=
為首項(xiàng),b2-b1=
為公差的等差數(shù)列,
所以數(shù)列{bn}的通項(xiàng)公式bn=
(n+1),
把上式代入②,則an+1=
,
特別地,當(dāng)a1=1也符合上式,故數(shù)列{an}的通項(xiàng)公式an=
n(n+1).
(2)令cn=
,則
=
,
當(dāng)p>3,數(shù)列{cn}單調(diào)遞減,因?yàn)榧?/span>M中只有一個元素,所以c2<λ≤c1,
即
<λ≤
;
當(dāng)p=3, c1=c2>c3>c4>…,M中不可能只有一個元素,所以不符合題意;
當(dāng)0<p≤1,數(shù)列{cn}單調(diào)遞增,M中不可能只有一個元素,所以不符合題意;
當(dāng)1<p<3,令k=[
]∈N,即k是小于等于
的最大整數(shù),則
<p-1≤
.
①若p=
+1時,則c1<c2<…<ck=ck+1>ck+2>ck+3>…,M中不可能只有一個元素,所 以不符合題意;
②若
+1<p<
時,則c1<c2<…<ck<ck+1>ck+2>ck+3>…,
且ck+2>ck,所以ck+2<λ≤ck+1,即
<λ≤
;
③若
≤p<
+1時,則c1<c2<…<ck<ck+1>ck+2>ck+3>…,
且ck+2≤ck,所以ck<λ≤ck+1,即
<λ≤
;
綜上,當(dāng)p>3時,
<λ≤
;
當(dāng)1<p<3時,取k=[
]∈N,
(i)若
+1<p<
時,
<λ≤
;
(ii)若
≤p<
+1時,
<λ≤
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某果園基地培育出一種特色水果,要在某一季節(jié)內(nèi)采摘一批這種水果銷往A市,每售出1噸這種水果獲利800元,未售出的水果每噸虧損400元,根據(jù)去年市場調(diào)研數(shù)據(jù)統(tǒng)計,該季節(jié)A市對這種水果的市場需求量t(單位:噸,100≤t≤150)的頻率分布直方圖如圖所示.現(xiàn)該果園計劃采摘140噸這種水果運(yùn)往A市,經(jīng)銷這種水果的利潤Q(單位:元)
![]()
(1)求Q關(guān)t的函數(shù)表達(dá)式;
(2)視頻率為概率,求利潤Q的分布列及數(shù)學(xué)期望.(每組數(shù)據(jù)以區(qū)間的中點(diǎn)值為代表).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】最近上映的電影《后來的我們》引起了一陣熱潮,為了了解大眾對這部電影的評價,隨機(jī)訪問了50名觀影者,根據(jù)這50人對該電影的評分,繪制頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為
,
,…,
,
.
(1)求頻率分布直方圖中
的值,并估計觀影者對該電影評分不低于80的概率;
(2)由頻率分布直方圖估計評分的中位數(shù)(保留兩位小數(shù))與平均數(shù);
(3)從評分在
的觀影者中隨機(jī)抽取2人,求至少有一人評分在
的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某電視臺有一檔益智答題類綜藝節(jié)日,每期節(jié)目從現(xiàn)場編號為01~80的80名觀眾中隨機(jī)抽取10人答題.答題選手要從“科技”和“文藝”兩類題目中選一類作答,一共回答10個問題,答對1題得1分.
(1)若采用隨機(jī)數(shù)表法抽取答題選手,按照以下隨機(jī)數(shù)表,從下方帶點(diǎn)的數(shù)字2開始向右讀,每次讀取兩位數(shù),一行用完接下一行左端,求抽取的第6個觀眾的編號.
1622779439 4954435482 1737932378 8735
09643 8426349164
8442175331 5724550688 7704744767 2176335025 8392120676
(2)若采用等距系統(tǒng)抽樣法抽取答題選手,且抽取的最小編號為06,求抽取的最大編號.
(3)某期節(jié)目的10名答題選手中6人選科技類題目,4人選文藝類題目.其中選擇科技類的6人得分的平均數(shù)為7,方差為
;選擇文藝類的4人得分的平均數(shù)為8,方差為
.求這期節(jié)目的10名答題選手得分的平均數(shù)和方差.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
的二項(xiàng)展開式的各二項(xiàng)式系數(shù)的和與各項(xiàng)系數(shù)的和均為![]()
(1)求展開式中有理項(xiàng)的個數(shù);
(2)求展開式中系數(shù)最大的項(xiàng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】商店出售一種成本為40元/千克的產(chǎn)品,據(jù)市場分析,若按50元/千克銷售,一個月能售出500千克,銷售單價每漲1元,月銷售量就減少10千克,設(shè)銷售單價為
元/千克,月銷售利潤為
元.
(1)當(dāng)銷售單價定為55元/千克時,計算銷售量和月銷售利潤;
(2)求
與
之間的函數(shù)關(guān)系式,并說明當(dāng)銷售單價應(yīng)定為多少時,月銷售利潤最大?最大利潤是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合
,函數(shù)
定義于
并取值于
.(用數(shù)字作答)
(1)若
對于任意的
成立,則這樣的函數(shù)
有_______個;
(2)若至少存在一個
,使
,則這樣的函數(shù)
有____個.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)大學(xué)畢業(yè)后,決定利用所學(xué)專業(yè)進(jìn)行自主創(chuàng)業(yè),經(jīng)過市場調(diào)查,生產(chǎn)一小型電子產(chǎn)品需投入固定成本2萬元,每生產(chǎn)
萬件,需另投入流動成本
萬元,當(dāng)年產(chǎn)量小于
萬件時,
(萬元);當(dāng)年產(chǎn)量不小于7萬件時,
(萬元).已知每件產(chǎn)品售價為6元,假若該同學(xué)生產(chǎn)的商品當(dāng)年能全部售完.
(1)寫出年利潤
(萬年)關(guān)于年產(chǎn)量
(萬件)的函數(shù)解析式;(注:年利潤=年銷售收入-固定成本-流動成本)
(2)當(dāng)年產(chǎn)量約為多少萬件時,該同學(xué)的這一產(chǎn)品所獲年利潤最大?最大年利潤是多少?
(取
).
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com