欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

20.已知函數(shù)$f(x)=sinωx+\sqrt{3}cosωx$ (ω>0)的圖象與直線y=-2的兩個(gè)相鄰公共點(diǎn)之間的距離等于π,則f(x)的單調(diào)遞減區(qū)間是(  )
A.$[kπ+\frac{π}{6},kπ+\frac{7π}{6}]k∈{Z}$B.$[kπ+\frac{π}{12},kπ+\frac{7π}{12}]k∈{Z}$
C.$[kπ+\frac{π}{12},kπ+\frac{7π}{6}]k∈{Z}$D.$[kπ-\frac{π}{12},kπ+\frac{7π}{12}]k∈{Z}$

分析 利用三角恒等變換、正弦函數(shù)的周期性,求得f(x)的解析式,再利用正弦函數(shù)的單調(diào)性,求得f(x)的單調(diào)遞減區(qū)間.

解答 解:∵函數(shù)$f(x)=sinωx+\sqrt{3}cosωx$=2sin(ωx+$\frac{π}{3}$)(ω>0)
的圖象與直線y=-2的兩個(gè)相鄰公共點(diǎn)之間的距離等于π,
∴T=$\frac{2π}{ω}$=π,∴ω=2,f(x)=2sin(2x+$\frac{π}{3}$).
令2kπ+$\frac{π}{2}$≤2x+$\frac{π}{3}$≤2kπ+$\frac{3π}{2}$,求得kπ+$\frac{π}{12}$≤x≤kπ+$\frac{7π}{12}$,
可得f(x)的單調(diào)遞減區(qū)間是[得kπ+$\frac{π}{12}$,kπ+$\frac{7π}{12}$],k∈Z,
故選:B.

點(diǎn)評(píng) 本題主要考查三角恒等變換,正弦函數(shù)的周期性和單調(diào)性,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)f(x)=$\sqrt{{x}^{2}-2ax+3}$在(-1,1)上是單調(diào)遞增的,則a的取值范圍是(  )
A.[-2,-1]B.(-∞,-1]C.[1,2]D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知a,b,c分別為△ABC的三個(gè)內(nèi)角A,B,C對(duì)應(yīng)的邊長,A=60°,B=45°,$b=\sqrt{6}$,則a=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若sin(π-α)=-$\frac{{\sqrt{3}}}{3}$,且α∈(π,$\frac{3π}{2}$),則sin($\frac{π}{2}$+α)=( 。
A.-$\frac{\sqrt{6}}{3}$B.-$\frac{\sqrt{6}}{6}$C.$\frac{\sqrt{6}}{6}$D.$\frac{\sqrt{6}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.定義在R上的函數(shù)f(x)既是奇函數(shù)又是周期函數(shù).若f(x)的最小正周期是π,且當(dāng)$x∈[0,\frac{π}{2}]$時(shí),f(x)=sinx,則$f(\frac{5}{3}π)$的值為( 。
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.給出下列四個(gè)命題,其中正確的是( 。
①空間四點(diǎn)共面,則其中必有三點(diǎn)共線;
②空間四點(diǎn)不共面,則其中任何三點(diǎn)不共線;
③空間四點(diǎn)中存在三點(diǎn)共線,則此四點(diǎn)共面;
④空間四點(diǎn)中任何三點(diǎn)不共線,則此四點(diǎn)不共面.
A.②③B.①②③C.①②D.②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)f(x)為可導(dǎo)函數(shù),且滿足$\underset{lim}{x→0}$$\frac{f(1)-f(1+2x)}{2x}$=1,則曲線y=f(x)在點(diǎn)(1,f(1))處的切線的斜率為( 。
A.2B.-2C.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,點(diǎn)C是以AB為直徑的圓上一點(diǎn),直角梯形BCDE所在平面與圓O所在平面垂直,且DE∥BC,DC⊥BC,DE=1,BC=2,AC=CD=3
(1)證明:EO∥平面ACD; 
(2)證明:平面ACD⊥平面BCDE;
(3)求三棱錐E-ABD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.對(duì)函數(shù)f(x)=$\frac{cosx+m}{cosx+2}$,若?a,b,c∈R,f(a),f(b),f(c)都為某個(gè)三角形的三邊長,則實(shí)數(shù)m的取值范圍是(  )
A.($\frac{5}{4}$,6)B.($\frac{5}{3}$,6)C.($\frac{7}{5}$,5)D.($\frac{5}{4}$,5)

查看答案和解析>>

同步練習(xí)冊(cè)答案