【題目】已知橢圓C以坐標(biāo)軸為對稱軸,以坐標(biāo)原點為對稱中心,橢圓的一個焦點為
,點
在橢圓上,
Ⅰ
求橢圓C的方程.
Ⅱ
斜率為k的直線l過點F且不與坐標(biāo)軸垂直,直線l交橢圓于A、B兩點,線段AB的垂直平分線與x軸交于點G,求點G橫坐標(biāo)的取值范圍.
【答案】
Ⅰ
.
Ⅱ
.
【解析】
Ⅰ
設(shè)橢圓方程為
,由橢圓可得
,解出即可得出.
Ⅱ
解法一:設(shè)
,
,AB中點
,直線AB的方程為
,代入橢圓方程可得
,利用根與系數(shù)的關(guān)系、中點坐標(biāo)公式可得N的坐標(biāo),可得AB的垂直平分線NG的方程為,進(jìn)而得出.
解法二:設(shè)
,
,AB中點
,把點A,B的坐標(biāo)分別代入橢圓方程相減可得:
,利用中點坐標(biāo)公式、斜率計算公式可得斜率
,又
,可得
,又
在橢圓內(nèi),即
,可得
,利用AB的垂直平分線為
,即可得出.
Ⅰ
設(shè)橢圓方程為
,
則![]()
由
得![]()
由
得
代入
得
,
即
,即
,或![]()
,
,得
,
,
,
橢圓方程為
.
Ⅱ
解法一:設(shè)
,
,AB中點
,
直線AB的方程為
,
代入
,整理得
,
直線AB過橢圓的左焦點F,
方程有兩個不等實根,
則
,
,
,
,
的垂直平分線NG的方程為
,
時,
,
,
,
,
,
.
解法二:設(shè)
,
,AB中點
,
由
,
得
,
斜率
,
又
,
,
,得
,
在橢圓內(nèi),即
,
將
代入得
,
解得![]()
,
則AB的垂直平分線為
,
時,
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從裝有兩個紅球和兩個黑球的口袋內(nèi)任取兩個球,那么互斥而不對立的兩個事件是( )
A. “至少有一個黑球”與“都是紅球”
B. “至少有一個黑球”與“至少有一個紅球”
C. “至少有一個黑球”與“都是黑球”
D. “恰有一個黑球”與“恰有兩個黑球”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某學(xué)校進(jìn)行的一次語文與歷史成績中,隨機抽取了25位考生的成績進(jìn)行分析,25位考生的語文成績已經(jīng)統(tǒng)計在莖葉圖中,歷史成績?nèi)缦拢?/span>
(Ⅰ)請根據(jù)數(shù)據(jù)在莖葉圖中完成歷史成績統(tǒng)計;
(Ⅱ)請根據(jù)數(shù)據(jù)完成語文成績的頻數(shù)分布表及語文成績的頻率分布直方圖;![]()
語文成績的頻數(shù)分布表:
語文成績分組 | [50,60) | [60,70) | [70,80) | [90,100) | [100,110) | [110,120] |
頻數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
上一點
與橢圓右焦點的連線垂直于x軸,直線l:y=kx+m與橢圓C相交于A,B兩點(均不在坐標(biāo)軸上).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)O為坐標(biāo)原點,若△AOB的面積為
,試判斷直線OA與OB的斜率之積是否為定值?若是請求出,若不是請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓O:
經(jīng)過點
,與x軸正半軸交于點B.
Ⅰ
______;
將結(jié)果直接填寫在答題卡的相應(yīng)位置上![]()
Ⅱ
圓O上是否存在點P,使得
的面積為15?若存在,求出點P的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)f(x)=2x2+(x﹣2a)|x﹣a|在區(qū)間[﹣3,1]上不是單調(diào)函數(shù),則實數(shù)a的取值范圍是( )
A.[﹣4,1]
B.[﹣3,1]
C.(﹣6,2)
D.(﹣6,1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:x0∈[0,2],log2(x+2)<2m;命題q:關(guān)于x的方程3x2﹣2x+m2=0有兩個相異實數(shù)根.
(1)若(¬p)∧q為真命題,求實數(shù)m的取值范圍;
(2)若p∨q為真命題,p∧q為假命題,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知三棱柱ABC-A1B1C1的所有棱長均為1,且AA1⊥底面ABC,則三棱錐B1-ABC1的體積為( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com