【題目】如圖,在四棱錐
中,底面
為直角梯形,
,
,
,
,
平面
.
![]()
(1)求異面直線
與
所成角的大;
(2)求二面角
的余弦值.
【答案】(1)
;(2)
.
【解析】
(1)以A為原點,AB為x軸,AD為y軸,AP為z軸,建立空間直角坐標(biāo)系,利用向量法能求出異面直線BD與PC所成角的大。
(2)求出平面APC的法向量和平面PCD的法向量,利用向量法能求出二面角A﹣PC﹣D的余弦值.
(1)以
、
、
所在直線分別為
軸、
軸、
軸,
建立空間直角坐標(biāo)系,
則
,
,
,
,
所以,
,
,
因為
,所以,
.
所以,異面直線
與
所成角的大小為
.
![]()
(2)由(1)
平面
,所以
是平面
的一個法向量./span>
設(shè)平面
的一個法向量為
,
因為
,
,則由
得![]()
取
,則
,
,故![]()
設(shè)
與
的夾角為
,則
.
由圖形知二面角
為銳二面角,
所以二面角
的余弦值為
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(
).
(1)證明:當(dāng)
時,
在
上是增函數(shù);
(2)是否存在實數(shù)
,只有唯一正數(shù)
,對任意正數(shù)
,使不等式
恒成立?若存在,求出這樣的
;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐
中,底面
是邊長為2的菱形,
,
,平面
平面
,點
為棱
的中點.
![]()
(Ⅰ)在棱
上是否存在一點
,使得
平面
,并說明理由;
(Ⅱ)當(dāng)二面角
的余弦值為
時,求直線
與平面
所成的角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義:若函數(shù)
的圖象經(jīng)過變換
后所得的圖象對應(yīng)的函數(shù)與
的值域相同,則稱變換
是
的同值變換,下面給出了四個函數(shù)與對應(yīng)的變換:①
,
將函數(shù)
的圖象關(guān)于直線
作對稱變換;②
,
將函數(shù)
的圖象關(guān)于
軸作對稱變換;③
,
將函數(shù)
的圖象關(guān)于點
作對稱變換;④
,
將函數(shù)
的圖象關(guān)于點
作對稱變換.其中
是
的同值變換的有__________(寫出所有符合題意的序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三棱錐
的所有頂點都在球
的球面上,
平面
,
,
,若球
的表面積為
,則三棱錐
的側(cè)面積的最大值為( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
的圖象向右平移
個單位長度,所得圖象對應(yīng)的函數(shù)為
.
(1)求函數(shù)
的表達(dá)式及其周期;
(2)求函數(shù)
在
上的對稱軸、對稱中心及其單調(diào)增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個角形海灣
(常數(shù)
為銳角).?dāng)M用長度為
(
為常數(shù))的圍網(wǎng)圍成一個養(yǎng)殖區(qū),有以下兩種方案可供選擇:方案一:如圖1,圍成扇形養(yǎng)殖區(qū)
,其中
;方案二:如圖2,圍成三角形養(yǎng)殖區(qū)
,其中
.
![]()
(1)求方案一中養(yǎng)殖區(qū)的面積
;
(2)求方案二中養(yǎng)殖區(qū)的最大面積(用
表示);
(3)為使養(yǎng)殖區(qū)的面積最大,應(yīng)選擇何種方案?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|2x﹣1|﹣a.
(1)當(dāng)a=1時,解不等式f(x)>x+1;
(2)若存在實數(shù)x,使得f(x)
f(x+1),求實數(shù)a的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com