(本題14分)已知
是等差數(shù)列,其前n項和為Sn,
是等比數(shù)列,且
,
.
(Ⅰ)求數(shù)列
與
的通項公式;
(Ⅱ)記
,
,求
(
).
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題12分)已知數(shù)列
的首項為
,其前
項和為
,且對任意正整數(shù)
有:
、
、
成等差數(shù)列.
(1)求證:數(shù)列
成等比數(shù)列;
(2)求數(shù)列
的通項公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列
,
是
的前
項和,且
.
(1)求
的通項公式;
(2)設(shè)
,
是
的前n項和,是否存在正數(shù)
,對任意正整數(shù)
,不等式
恒成立?若存在,求
的取值范圍;若不存在,說明理由.
(3)判斷方程
是否有解,說明理由;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)在等差數(shù)列
中,
,前
項和為
,等比數(shù)列
各項均為正數(shù),
,且
,
的公比
.
(1)求
與
;(2)求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題12分)已知數(shù)列
是等差數(shù)列,其前n項和公式為
,![]()
(1)求數(shù)列
的通項公式和
;
(2)求
的值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
等差數(shù)列{an}不是常數(shù)列,
=10,且
是等比數(shù)列{
}的第1,3,5項,且
.
(1)求數(shù)列{
}的第20項,(2)求數(shù)列{
}的通項公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知{an}為等差數(shù)列,且a1+a3=8,a2+a4=12.
(1){an}的通項公式;
(2)記{an}的前n項和為Sn,若a1,ak,Sk+2成等比數(shù)列,求正整數(shù)k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)
設(shè)
是等差數(shù)列,
是各項都為正數(shù)的等比數(shù)列,且
,
,
.
(1)求
,
的通項公式;(2)求數(shù)列
的前
項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
已知
是正數(shù)組成的數(shù)列,
,且點
在函數(shù)
的圖象上.?dāng)?shù)列
滿足
,
.
(Ⅰ)求數(shù)列
、
的通項公式;
(Ⅱ)若![]()
,求數(shù)列
的前
項和
.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com