【題目】如圖所示,在直角坐標(biāo)系
中,曲線C由以原點為圓心,半徑為2的半圓和中心在原點,焦點在x軸上的半橢圓構(gòu)成,以坐標(biāo)原點
為極點,x軸正半軸為極軸建立極坐標(biāo)系.
![]()
(1)寫出曲線C的極坐標(biāo)方程;
(2)已知射線
與曲線C交于點M,點N為曲線C上的動點,求
面積的最大值.
【答案】(1)
;(2)
.
【解析】
(1)根據(jù)題意,分別求出曲線
上半部分和下半部分直角坐標(biāo)方程,利用直角坐標(biāo)系與極坐標(biāo)的轉(zhuǎn)化公式,即可得到曲線
的極坐標(biāo)方程;
(2)由題可知要使
面積最大,則點
在半圓上,且
,利用極坐標(biāo)方程求出
,由三角形面積公式即可得到答案。
(1)由題設(shè)可得,
曲線
上半部分的直角坐標(biāo)方程為
,
所以曲線
上半部分的極坐標(biāo)方程為
.
又因為曲線
下半部分的標(biāo)準(zhǔn)方程為
,
所以曲線
下半部分極坐標(biāo)方程為
,
故曲線
的極坐標(biāo)方程為
.
(2)由題設(shè),將
代入曲線
的極坐標(biāo)方程可得:
.
又點
是曲線
上的動點,所以
.
由面積公式得:
當(dāng)且僅當(dāng)
,
時等號成立,故
面積的最大值為
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
是定義在
上的偶函數(shù),且
,若函數(shù)
有 6 個零點,則實數(shù)
的取值范圍是( )
A.
B. ![]()
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠每日生產(chǎn)一種產(chǎn)品
噸,每日生產(chǎn)的產(chǎn)品當(dāng)日銷售完畢,日銷售額為
萬元,產(chǎn)品價格隨著產(chǎn)量變化而有所變化,經(jīng)過段時間的產(chǎn)銷, 得到了
的一組統(tǒng)計數(shù)據(jù)如下表:
日產(chǎn)量 | 1 | 2 | 3 | 4 | 5 |
日銷售量 | 5 | 12 | 16 | 19 | 21 |
(1)請判斷
與
中,哪個模型更適合到畫
之間的關(guān)系?可從函數(shù)增長趨勢方面給出簡單的理由;
(2)根據(jù)你的判斷及下面的數(shù)據(jù)和公式,求出
關(guān)于
的回歸方程,并估計當(dāng)日產(chǎn)量
時,日銷售額是多少?
參考數(shù)據(jù):
,![]()
![]()
線性回歸方程
中,
,
,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=loga(x+a)(a>0且a≠1)的圖象過點(﹣1,0),g(x)=f(x)+f(﹣x).
(Ⅰ)求函數(shù)g(x)的定義域;
(Ⅱ)寫出函數(shù)g(x)的單調(diào)區(qū)間,并求g(x)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著西部大開發(fā)的深入,西南地區(qū)的大學(xué)越來越受到廣大考生的青睞.下表是西南地區(qū)某大學(xué)近五年的錄取平均分與省一本線對比表:
年份 |
|
|
|
|
|
年份代碼 |
|
|
|
|
|
省一本線 |
|
|
|
|
|
錄取平均分 |
|
|
|
|
|
錄取平均分與省一本線分差 |
|
|
|
|
|
(1)根據(jù)上表數(shù)據(jù)可知,
與
之間存在線性相關(guān)關(guān)系,求
關(guān)于
的性回歸方程;
(2)假設(shè)2019年該省一本線為
分,利用(1)中求出的回歸方程預(yù)測2019年該大學(xué)錄取平均分.
參考公式:
,![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市為節(jié)約用水,計劃在本市試行居民生活用水定額管理,為了較為合理地確定居民日常用水量的標(biāo)準(zhǔn),通過抽樣獲得了100位居民某年的月均用水量(單位:噸),右表是100位居民月均用水量的頻率分布表,根據(jù)右表解答下列問題:
分組 | 頻數(shù) | 頻率 |
[0,1) | 10 | 0.10 |
[1,2) |
| 0.20 |
[2,3) | 30 | 0.30 |
[3,4) | 20 |
|
[4,5) | 10 | 0.10 |
[5,6] | 10 | 0.10 |
合計 | 100 | 1.00 |
![]()
(1)求右表中
和
的值;
(2)請將頻率分布直方圖補(bǔ)充完整,并根據(jù)直方圖估計該市每位居民月均用水量的眾數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C的圓心為(1,1),直線
與圓C相切.
(1)求圓C的標(biāo)準(zhǔn)方程;
(2)若直線過點(2,3),且被圓C所截得的弦長為2,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了分析在一次數(shù)學(xué)競賽中甲、乙兩個班的數(shù)學(xué)成績,分別從甲、乙兩個班中隨機(jī)抽取了10個學(xué)生的成績,成績的莖葉圖如下:
![]()
(Ⅰ)根據(jù)莖葉圖,計算甲班被抽取學(xué)生成績的平均值
及方差
;
(Ⅱ)若規(guī)定成績不低于90分的等級為優(yōu)秀,現(xiàn)從甲、乙兩個班級所抽取成績等級為優(yōu)秀的學(xué)生中,隨機(jī)抽取2人,求這兩個人恰好都來自甲班的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知一定點
,及一定直線
:
,以動點
為圓心的圓
過點
,且與直線
相切.
(Ⅰ)求動點
的軌跡
的方程;
(Ⅱ)設(shè)
在直線
上,直線
,
分別與曲線
相切于
,
,
為線段
的中點.求證:
,且直線
恒過定點.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com