已知函數(shù)
,![]()
⑴求證函數(shù)
在
上的單調(diào)遞增;
⑵函數(shù)
有三個零點,求
的值;
⑶對
恒成立,求a的取值范圍。
(1)詳見解析;(2)
;(3)
.
【解析】
試題分析:(1)證明函數(shù)在某區(qū)間單調(diào)遞增,判斷其導函數(shù)在此區(qū)間上的符號即可;(2)判斷函數(shù)零點的個數(shù)一般可從方程或圖象兩個角度考察,但當函數(shù)較為復雜,難以畫出它的圖象時,可以將其適當?shù)葍r轉(zhuǎn)化,變?yōu)榕袛鄡蓚函數(shù)圖象交點個數(shù);(3)恒成立問題則常用分離參數(shù)的方法,轉(zhuǎn)化為求函數(shù)的最值問題,也可直接考察函數(shù)的性質(zhì)進行解決,本題則可轉(zhuǎn)化為
,而求
則可利用導數(shù)去判斷函數(shù)的單調(diào)性,還要注意分類討論.
試題解析:⑴證明:
,
![]()
函數(shù)
在
上單調(diào)遞增.
3分
⑵解:令
,解得![]()
|
|
|
|
|
|
|
|
|
|
|
|
|
極小值1 |
|
,
函數(shù)
有三個零點,
有三個實根,
.
7分
⑶由⑵可知
在區(qū)間
單調(diào)遞減,在區(qū)間
單調(diào)遞增,
,
又
,
設
,則![]()
在
上單調(diào)遞增,
,即
,
,
所以,對于
,
.
12分
考點:函數(shù)的單調(diào)性、函數(shù)的零點、不等式恒成立問題.
科目:高中數(shù)學 來源: 題型:
| f(x) |
| x |
| f(x) |
| x2 |
| x | a | b | c | a+b+c |
| f(x) | d | d | t | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
| 9 | m2-3 |
查看答案和解析>>
科目:高中數(shù)學 來源:2014屆湖北孝感高中高三年級九月調(diào)研考試理科數(shù)學試卷(解析版) 題型:解答題
已知函數(shù)
的定義域為
,若
在
上為增函數(shù),則稱
為“一階比增函數(shù)”;若
在
上為增函數(shù),則稱
為“二階比增函數(shù)”.我們把所有“一階比增函數(shù)”組成的集合記為
,所有“二階比增函數(shù)”組成的集合記為
.
(Ⅰ)已知函數(shù)
,若
且
,求實數(shù)
的取值范圍;
(Ⅱ)已知
,
且
的部分函數(shù)值由下表給出,
|
|
|
|
|
|
|
|
|
|
|
|
求證:
;
(Ⅲ)定義集合![]()
請問:是否存在常數(shù)
,使得
,
,有
成立?若存在,求出
的最小值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
已知函數(shù)
的定義域為
,若
在
上為增函數(shù),則稱
為“一階比增函數(shù)”;若
在
上為增函數(shù),則稱
為“二階比增函數(shù)”.
我們把所有“一階比增函數(shù)”組成的集合記為
,所有“二階比增函數(shù)”組成的集合記為
.
(Ⅰ)已知函數(shù)
,若
且
,求實數(shù)
的取值范圍;
(Ⅱ)已知
,
且
的部分函數(shù)值由下表給出,
|
|
|
|
|
|
|
|
|
|
|
求證:
;
(Ⅲ)定義集合![]()
請問:是否存在常數(shù)
,使得
,
,有
成立?若存在,求出
的最小值;若不存在,說明理由.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com