【題目】巳知函數(shù)
,
,其中
.
(1)若
是函數(shù)
的極值點(diǎn),求
的值;
(2)若
在區(qū)間
上單調(diào)遞增,求
的取值范圍;
(3)記
,求證:
.
【答案】(1)
;(2)
;(3)參考解析
【解析】
試題(1)由函數(shù)
,所以可得
,又
是函數(shù)
的極值點(diǎn),即
.
(2)因?yàn)?/span>
在區(qū)間
上單調(diào)遞增,所以對(duì)函數(shù)
求導(dǎo),然后把變量
分離,求函數(shù)
的最值即可.
(3)由
即可得到,
,按
的降冪寫成二次三項(xiàng)的形式,然后再配方,即可得到
.再用放縮法即可得到結(jié)論.
試題解析:(1)由
,
得
,
∵
是函數(shù)
的極值點(diǎn),
∴
,解得
,經(jīng)檢驗(yàn)
為函數(shù)
的極值點(diǎn),所以
.
(2)∵
在區(qū)間
上單調(diào)遞增,
∴
在區(qū)間
上恒成立,
∴
對(duì)區(qū)間
恒成立,
令
,則![]()
當(dāng)
時(shí),
,有
,
∴
的取值范圍為
.
(3) 解法1:![]()
,令
,
則![]()
![]()
令
,則
,
顯然
在
上單調(diào)遞減,在
上單調(diào)遞增,
則
,則
,
故
.
解法2:![]()
![]()
則
表示
上一點(diǎn)
與直線
上一點(diǎn)
距離的平方.
由
得
,讓
,解得
,
∴直線
與
的圖象相切于點(diǎn)
,
(另解:令
,則
,
可得
在
上單調(diào)遞減,在
上單調(diào)遞增,
故
,則
,
直線
與
的圖象相切于點(diǎn)
),
點(diǎn)(1,0)到直線
的距離為
,
則
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐
中,已知
平面
,且四邊形
為直角梯形,
,
,
.
![]()
(Ⅰ)求平面
與平面
所成二面角(銳角)的余弦值;
(Ⅱ)點(diǎn)
是線段
上的動(dòng)點(diǎn),當(dāng)直線
與
所成角最小時(shí),求線段
的長(zhǎng)度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列命題:
(1)存在實(shí)數(shù)
使
;
(2)直線
是函數(shù)
圖象的一條對(duì)稱軸;
(3)
(
)的值域是
;
(4)若
,
都是第一象限角,且
,則
.
其中正確命題的序號(hào)為( )
A.(1)(2)B.(2)(3)C.(3)(4)D.(1)(4)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若存在常數(shù) k(k∈N * , k≥2)、d、t( d , t∈R),使得無(wú)窮數(shù)列 {a n }滿足a n +1
,則稱數(shù)列{an }為“段差比數(shù)列”,其中常數(shù) k、d、t 分別叫做段長(zhǎng)、段差、段比.設(shè)數(shù)列 {bn }為“段差比數(shù)列”.
(1)已知 {bn }的首項(xiàng)、段長(zhǎng)、段差、段比分別為1、 2 、 d 、 t .若 {bn }是等比數(shù)列,求 d 、 t 的值;
(2)已知 {bn }的首項(xiàng)、段長(zhǎng)、段差、段比分別為1、3 、3 、1,其前 3n 項(xiàng)和為 S3n .若不等式 S3n≤ λ 3n1對(duì) n ∈ N *恒成立,求實(shí)數(shù) λ 的取值范圍;
(3)是否存在首項(xiàng)為 b,段差為 d(d ≠ 0 )的“段差比數(shù)列” {bn },對(duì)任意正整數(shù) n 都有 bn+6 = bn ,若存在, 寫出所有滿足條件的 {bn }的段長(zhǎng) k 和段比 t 組成的有序數(shù)組 (k, t );若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2014年7月18日15時(shí),超強(qiáng)臺(tái)風(fēng)“威馬遜”登陸海南。畵(jù)統(tǒng)計(jì),本次臺(tái)風(fēng)造成全省直接經(jīng)濟(jì)損失119.52億元.適逢暑假,小明調(diào)查住在自己小區(qū)的50戶居民由于臺(tái)風(fēng)造成的經(jīng)濟(jì)損失,作出如下頻率分布直方圖:
![]()
經(jīng)濟(jì)損失 4000元以下 | 經(jīng)濟(jì)損失 4000元以上 | 合計(jì) | |
捐款超過(guò)500元 | 30 | ||
捐款低于500元 | 6 | ||
合計(jì) |
(1)臺(tái)風(fēng)后區(qū)委會(huì)號(hào)召小區(qū)居民為臺(tái)風(fēng)重災(zāi)區(qū)捐款,小明調(diào)查的50戶居民捐款情況如上表,在表格空白處填寫正確數(shù)字,并說(shuō)明是否有
以上的把握認(rèn)為捐款數(shù)額是否多于或少于500元和自身經(jīng)濟(jì)損失是否到4000元有關(guān)?
(2)臺(tái)風(fēng)造成了小區(qū)多戶居民門窗損壞,若小區(qū)所有居民的門窗均由李師傅和張師傅兩人進(jìn)行維修,李師傅每天早上在7:00到8:00之間的任意時(shí)刻來(lái)到小區(qū),張師傅每天早上在7:30到8:30分之間的任意時(shí)刻來(lái)到小區(qū),求連續(xù)3天內(nèi),李師傅比張師傅早到小區(qū)的天數(shù)的數(shù)學(xué)期望.
附:臨界值表
![]()
參考公式:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它前一項(xiàng)的差都大于2,則稱這個(gè)數(shù)列為“阿當(dāng)數(shù)列”.
(1)若數(shù)列
為“阿當(dāng)數(shù)列”,且
,
,
,求實(shí)數(shù)
的取值范圍;
(2)是否存在首項(xiàng)為1的等差數(shù)列
為“阿當(dāng)數(shù)列”,且其前
項(xiàng)和
滿足
?若存在,請(qǐng)求出
的通項(xiàng)公式;若不存在,請(qǐng)說(shuō)明理由.
(3)已知等比數(shù)列
的每一項(xiàng)均為正整數(shù),且
為“阿當(dāng)數(shù)列”,
,
,當(dāng)數(shù)列
不是“阿當(dāng)數(shù)列”時(shí),試判斷數(shù)列
是否為“阿當(dāng)數(shù)列”,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)
,
是兩條不同的直線,
,
,
是三個(gè)不同的平面,給出下列四個(gè)命題:
①若
,
,則![]()
②若
,
,
,則![]()
③若
,
,則![]()
④若
,
,則![]()
其中正確命題的序號(hào)是( )
A.①和②B.②和③C.③和④D.①和④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合
,若對(duì)于任意實(shí)數(shù)對(duì)
,存在
,使
成立,則稱集合
是“垂直對(duì)點(diǎn)集” .給出下列四個(gè)集合:
①
;
②
;
③
;
④
.
其中是“垂直對(duì)點(diǎn)集”的序號(hào)是( ).
A.①②③B.①②④C.①③④D.②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)曲線
上一點(diǎn)
到焦點(diǎn)的距離為3.
(1)求曲線C方程;
(2)設(shè)P,Q為曲線C上不同于原點(diǎn)O的任意兩點(diǎn),且滿足以線段PQ為直徑的圓過(guò)原點(diǎn)O,試問直線PQ是否恒過(guò)定點(diǎn)?若恒過(guò)定點(diǎn),求出定點(diǎn)坐標(biāo);若不恒過(guò)定點(diǎn),說(shuō)明理由.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com