C
分析:年產(chǎn)量平均每年比上一年增加p%,可以先算出第一年產(chǎn)量是 y=a(1+p%),根據(jù)計劃年產(chǎn)量平均每年比上一年增加p%,可知年產(chǎn)量y是以a(1+p%)為首項,(1+p%)為公比的等比數(shù)列,從而可以算出年產(chǎn)量隨經(jīng)過年數(shù)變化的函數(shù)關(guān)系.
解答:設(shè)年產(chǎn)量經(jīng)過x年增加到y(tǒng)件,
第一年為 y=a(1+p%)
第二年為 y=a(1+p%)(1+p%)=a(1+p%)2
第三年為 y=a(1+p%)(1+p%)(1+p%)=a(1+p%)3
…
即年產(chǎn)量y是以a(1+p%)為首項,(1+p%)為公比的等比數(shù)列
∴y=a(1+p%)x(x∈N*).
故選C.
點評:本題是年增長率問題,其模型是等比數(shù)列模型,解題時根據(jù)計劃年產(chǎn)量平均每年比上一年增加p%,可知年產(chǎn)量y是以a(1+p%)為首項,(1+p%)為公比的等比數(shù)列是關(guān)鍵.