分析 (1)以O為原點,以OA為x軸正方向,建立圖示坐標系,設D(t,0)(0≤t≤1),求出C坐標,推出$\overrightarrow{OC}+\overrightarrow{OD}=(t-\frac{{\sqrt{2}}}{2},\frac{{\sqrt{2}}}{2})$,然后求出模的最小值.
(2)設C(cosθ,sinθ),$θ∈[0,\frac{3}{2}π]$,求出$\overrightarrow{CE}$•$\overrightarrow{CD}$的表達式,即可求出$\overrightarrow{CE}$•$\overrightarrow{CD}$的取值范圍.
解答
解:(1)以O為原點,OA為x軸建立直角坐標系,則$A(1,0),B(0,-1),C(-\frac{{\sqrt{2}}}{2},\frac{{\sqrt{2}}}{2})$
設D(t,0)(0≤t≤1),則$\overrightarrow{OC}+\overrightarrow{OD}=(t-\frac{{\sqrt{2}}}{2},\frac{{\sqrt{2}}}{2})$,
所以$|\overrightarrow{OC}+\overrightarrow{OD}|=\sqrt{{{(t-\frac{{\sqrt{2}}}{2})}^2}+{{(\frac{{\sqrt{2}}}{2})}^2}}$,
當$t=\frac{{\sqrt{2}}}{2}$時,$|\overrightarrow{OC}+\overrightarrow{OD}{|_{min}}=\frac{{\sqrt{2}}}{2}$.
(2)由題意$D(\frac{1}{2},0),E(0,-\frac{1}{2})$,設C(cosθ,sinθ),$θ∈[0,\frac{3}{2}π]$
所以$\overrightarrow{CE}•\overrightarrow{CD}=(cosθ-\frac{1}{2},sinθ)(cosθ,sinθ+\frac{1}{2})=1+\frac{1}{2}sinθ-\frac{1}{2}cosθ$=$\frac{{\sqrt{2}}}{2}sin(θ-\frac{π}{4})+1$.
因為$θ∈[0,\frac{3}{2}π]$,則$sin(θ-\frac{π}{4})∈[-\frac{1}{2},\frac{{\sqrt{2}}}{2}]$,所以$\overrightarrow{CE}•\overrightarrow{CD}∈[\frac{1}{2},1+\frac{{\sqrt{2}}}{2}]$.
點評 本題考查向量的數(shù)量積,向量的表示方法,三角運算,考查轉(zhuǎn)化思想,計算能力.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | ∅ | B. | {1,3,5} | C. | {2,4} | D. | {1,2,3,4,5} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | $\frac{1}{2}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{8}$ | D. | $\frac{1}{16}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com