欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

14.cos75°cos15°-sin255°sin165°的值是(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.0

分析 利用誘導(dǎo)公式、兩角和差的余弦公式,求得所給式子的值.

解答 解:cos75°cos15°-sin255°sin165°=cos75°cos15°+sin75°sin15°=cos(75°-15°)=cos60°=$\frac{1}{2}$,
故選:B.

點評 本題主要考查誘導(dǎo)公式、兩角和差的余弦公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.某中學(xué)高一、高二年級各有6個班.學(xué)校調(diào)査了一個學(xué)期各班的文學(xué)名著閱讀量(單位:本).并根據(jù)調(diào)査結(jié)果,得到如下所示的莖葉圖:為鼓勵學(xué)生閱讀.在高一、高二兩個年級中.學(xué)校將閱讀量高于本年級閱讀量平均數(shù)的班級命名為該年級的“書香班級”
(I )當(dāng)a=4時,記高一年級的“書香班級”數(shù)為“m,高二年級的”書香班級”數(shù)為n,比較m,n的大。
(II )在高一年級的6個班級中.任意選取兩個.求這兩個班級均是“書香班級“的槪率;
(III)若高二年級的“書香班級”數(shù)多于高一年級的“書香班級”數(shù).求a的值.(只需寫出結(jié)論)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.參數(shù)方程為$\left\{{\begin{array}{l}{x={t^2}}\\{y=2t}\end{array}}\right.$(t為參數(shù))的曲線的焦點坐標(biāo)為(1,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.命題“?x∈R,x2-x+1>0”的否定是( 。
A.?x∈R,x2-x+1≤0B.?x∈R,x2-x+1<0
C.?x0∈R,x02-x0+1≤0D.?x0∈R,x02-x0+1<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知正四面體ABCD的四個頂點都在球心為O的球面上,點P為棱BC的中點,$BC=6\sqrt{2}$,過點P作球O的截面,則截面面積的最小值為18π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.函數(shù)y=3sin(2x-$\frac{π}{3}$)的圖象,經(jīng)過下列哪個平移變換,可以得到函數(shù)y=3sin2x的圖象(  )
A.向左平移$\frac{π}{6}$B.向右平移 $\frac{π}{6}$C.向左平移 $\frac{π}{3}$D.向右平移$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在直角坐標(biāo)系中,直線l的參數(shù)方程$\left\{\begin{array}{l}{x=1+tcosα}\\{y=tsinα}\end{array}\right.$(t為參數(shù)) 以坐標(biāo)原點O為極點,以x軸正半軸為極軸,建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的單位長度,曲線C的極坐標(biāo)方程為ρ=4cosθ
(1)求曲線C的直角坐標(biāo)方程;
(2)若直線l與曲線C交于點A,B,且|AB|=$\sqrt{14}$,求直線的傾斜角α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知動員P過定點$M(-\sqrt{3},0)$且與圓N:${(x-\sqrt{3})^2}+{y^2}=16$相切,記動圓圓心P的軌跡為曲線C.
(Ⅰ)求曲線C的方程;
(Ⅱ)過點D(3,0)且斜率不為零的直線交曲線C于A,B兩點,在x軸上是否存在定點Q,使得直線AQ,BQ的斜率之積為非零常數(shù)?若存在,求出定點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若x>0,y>0,x+y=1,則$\frac{x^2}{x+2}+\frac{y^2}{y+1}$的最小值為(  )
A.$\frac{1}{4}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{{\sqrt{2}}}{4}$D.$\frac{1}{2}$

查看答案和解析>>

同步練習(xí)冊答案