【題目】設(shè)函數(shù)
,則下列結(jié)論錯(cuò)誤的是( )
A. f(x)的一個(gè)周期為-2π
B. y=f(x)的圖象關(guān)于直線x=
對(duì)稱
C. f(x+π)的一個(gè)零點(diǎn)為x=![]()
D. f(x)在
單調(diào)遞減
【答案】D
【解析】對(duì)于A選項(xiàng),因?yàn)閒(x)=cos
的周期為2kπ(k∈Z),所以f(x)的一個(gè)周期為-2π,A項(xiàng)正確.對(duì)于B選項(xiàng),因?yàn)閒(x)=cos
圖象的對(duì)稱軸為直線x=kπ-
(k∈Z),所以y=f(x)的圖象關(guān)于直線x=
對(duì)稱,B項(xiàng)正確.對(duì)于C選項(xiàng),f(x+π)=cos
.令x+
=kπ+
(k∈Z),得x=kπ-
,當(dāng)k=1時(shí),x=
,所以f(x+π)的一個(gè)零點(diǎn)為x=
,C項(xiàng)正確.對(duì)于D選項(xiàng),因?yàn)閒(x)=cos
的遞減區(qū)間為(2kπ-
,2kπ+
) (k∈Z),遞增區(qū)間為(2kπ+
,2kπ+
)(k∈Z),所以
是減區(qū)間,(
,π)是增區(qū)間,D項(xiàng)錯(cuò)誤.故選D.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=2x-
.
(1)判斷函數(shù)的奇偶性,并證明;
(2)用單調(diào)性的定義證明函數(shù)f(x)=2x-
在(0,+∞)上單調(diào)遞增.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在創(chuàng)建“全國(guó)文明衛(wèi)生城”過(guò)程中,某市“創(chuàng)城辦”為了調(diào)查市民對(duì)創(chuàng)城工作的了解情況,進(jìn)行了一次創(chuàng)城知識(shí)問卷調(diào)查(一位市民只能參加一次).通過(guò)隨機(jī)抽樣,得到參加問卷調(diào)查的1000人的得分(滿分100分)統(tǒng)計(jì)結(jié)果如下表所示.
組別 |
|
|
|
|
|
|
|
頻數(shù) | 25 | 150 | 200 | 250 | 225 | 100 | 50 |
(1)由頻數(shù)分布表可以大致認(rèn)為,此次問卷調(diào)查的得分
服從正態(tài)分布
,
近似為這1000人得分的平均值值(同一組數(shù)據(jù)用該組數(shù)據(jù)區(qū)間的中點(diǎn)值表示),請(qǐng)用正態(tài)分布的知識(shí)求
;
(2)在(1)的條件下,“創(chuàng)城辦”為此次參加問卷調(diào)查的市民制定如下獎(jiǎng)勵(lì)方案::
(ⅰ)得分不低于
的可以獲贈(zèng)2次隨機(jī)話費(fèi),得分低于
的可以獲贈(zèng)1次隨機(jī)話費(fèi);
(ⅱ)每次獲贈(zèng)送的隨機(jī)話費(fèi)和對(duì)應(yīng)的概率為:
贈(zèng)送的隨機(jī)話費(fèi)(單元:元) | 20 | 40 |
概率 | 0.75 | 0.25 |
現(xiàn)有市民甲要參加此次問卷調(diào)查,記
(單位:元)為該市民參加問卷調(diào)查獲贈(zèng)的話費(fèi),求
的分布列與數(shù)學(xué)期望.
附:參考數(shù)據(jù)與公式
,若
,則
①
;
②
;
③
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)平面中,
的兩個(gè)頂點(diǎn)為
,平面內(nèi)兩點(diǎn)
、
同時(shí)滿足:①
;②
;③
.
(1)求頂點(diǎn)
的軌跡
的方程;
(2)過(guò)點(diǎn)
作兩條互相垂直的直線
,直線
與點(diǎn)
的軌跡
相交弦分別為
,設(shè)弦
的中點(diǎn)分別為
.
①求四邊形
的面積
的最小值;
②試問:直線
是否恒過(guò)一個(gè)定點(diǎn)?若過(guò)定點(diǎn),請(qǐng)求出該定點(diǎn),若不過(guò)定點(diǎn),請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
的左、右焦點(diǎn)分別為
,
,且
,過(guò)點(diǎn)
的直線與橢圓
交于
,
兩點(diǎn),
的周長(zhǎng)為8.
![]()
(Ⅰ)求橢圓
的方程;
(Ⅱ)試問:是否存在定點(diǎn)
,使得
為定值?若存在,求
;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)
是偶函數(shù).
(1)求不等式
的解集;
(2)若不等式
對(duì)任意實(shí)數(shù)
成立,求實(shí)數(shù)
的取值范圍;
(3)設(shè)函數(shù)
,若
在
上有零點(diǎn),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校
、
兩個(gè)班的數(shù)學(xué)興趣小組在一次數(shù)學(xué)對(duì)抗賽中的成績(jī)繪制莖葉圖如下,通過(guò)莖葉圖比較兩班數(shù)學(xué)興趣小組成績(jī)的平均值及方差
![]()
①
班數(shù)學(xué)興趣小組的平均成績(jī)高于
班的平均成績(jī)
②
班數(shù)學(xué)興趣小組的平均成績(jī)高于
班的平均成績(jī)
③
班數(shù)學(xué)興趣小組成績(jī)的標(biāo)準(zhǔn)差大于
班成績(jī)的標(biāo)準(zhǔn)差
④
班數(shù)學(xué)興趣小組成績(jī)的標(biāo)準(zhǔn)差大于
班成績(jī)的標(biāo)準(zhǔn)差
其中正確結(jié)論的編號(hào)為( )
A. ①③ B. ①④ C. ②③ D. ②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了迎接世博會(huì),某旅游區(qū)提倡低碳生活,在景區(qū)提供自行車出租。該景區(qū)有50輛自行車供游客租賃使用,管理這些自行車的費(fèi)用是每日115元。根據(jù)經(jīng)驗(yàn),若每輛自行車的日租金不超過(guò)6元,則自行車可以全部租出;若超出6元,則每超過(guò)1元,租不出的自行車就增加3輛。為了便于結(jié)算,每輛自行車的日租金x(元)只取整數(shù),并且要求出租自行車一日的總收入必須高于這一日的管理費(fèi)用,用y(元)表示出租自行車的日凈收入(即一日中出租自行車的總收入減去管理費(fèi)用后的所得).
(1)求函數(shù)
的解析式及其定義域;
(2)試問當(dāng)每輛自行車的日租金定為多少元時(shí),才能使一日的凈收入最多?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐
中,側(cè)面
底面
,底面
是平行四邊形,
,
,
,
為
的中點(diǎn),點(diǎn)
在線段
上.
![]()
(Ⅰ)求證:
;
(Ⅱ)試確定點(diǎn)
的位置,使得直線
與平面
所成的角和直線
與平面
所成的角相等.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com