【題目】已知等差數(shù)列{an}滿足:a1=2,且a1 , a2 , a5成等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)記Sn為數(shù)列{an}的前n項和,是否存在正整數(shù)n,使得Sn>60n+800?若存在,求n的最小值;若不存在,說明理由.
【答案】
(1)解:設(shè)數(shù)列{an}的公差為d,依題意,2,2+d,2+4d成比數(shù)列,故有(2+d)2=2(2+4d),
化簡得d2﹣4d=0,解得d=0或4,
當d=0時,an=2,
當d=4時,an=2+(n﹣1)4=4n﹣2.
(2)解:當an=2時,Sn=2n,顯然2n<60n+800,
此時不存在正整數(shù)n,使得Sn>60n+800成立,
當an=4n﹣2時,Sn=
=2n2,
令2n2>60n+800,即n2﹣30n﹣400>0,
解得n>40,或n<﹣10(舍去),
此時存在正整數(shù)n,使得Sn>60n+800成立,n的最小值為41,
綜上,當an=2時,不存在滿足題意的正整數(shù)n,
當an=4n﹣2時,存在滿足題意的正整數(shù)n,最小值為41
【解析】(1)設(shè)出數(shù)列的公差,利用等比中項的性質(zhì)建立等式求得d,則數(shù)列的通項公式可得.(2)利用(1)中數(shù)列的通項公式,表示出Sn根據(jù)Sn>60n+800,解不等式根據(jù)不等式的解集來判斷.
【考點精析】掌握數(shù)列的前n項和和等差數(shù)列的性質(zhì)是解答本題的根本,需要知道數(shù)列{an}的前n項和sn與通項an的關(guān)系
;在等差數(shù)列{an}中,從第2項起,每一項是它相鄰二項的等差中項;相隔等距離的項組成的數(shù)列是等差數(shù)列.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知首項是1的兩個數(shù)列{an},{bn}(bn≠0,n∈N*)滿足anbn+1﹣an+1bn+2bn+1bn=0.
(1)令cn=
,求數(shù)列{cn}的通項公式;
(2)若bn=3n﹣1 , 求數(shù)列{an}的前n項和Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,O為坐標原點,橢圓C1:
+
=1(a>b>0)的左、右焦點分別為F1 , F2 , 離心率為e1;雙曲線C2:
﹣
=1的左、右焦點分別為F3 , F4 , 離心率為e2 , 已知e1e2=
,且|F2F4|=
﹣1. ![]()
(1)求C1、C2的方程;
(2)過F1作C1的不垂直于y軸的弦AB,M為AB的中點,當直線OM與C2交于P,Q兩點時,求四邊形APBQ面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),當x≥0時,f(x)=
(|x﹣a2|+|x﹣2a2|﹣3a2),若x∈R,f(x﹣1)≤f(x),則實數(shù)a的取值范圍為( )
A.[﹣
,
]
B.[﹣
,
]
C.[﹣
,
]
D.[﹣
,
]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
,在
處的切線方程為
.
(1)求
,
;
(2)若
,證明:
.
【答案】(1)
,
;(2)見解析
【解析】試題分析:(1)求出函數(shù)的導(dǎo)數(shù),得到關(guān)于
的方程組,解出即可;
(2)由(1)可知
,
,
由
,可得
,令
, 利用導(dǎo)數(shù)研究其單調(diào)性可得
,
從而證明
.
試題解析:((1)由題意
,所以
,
又
,所以
,
若
,則
,與
矛盾,故
,
.
(2)由(1)可知
,
,
由
,可得
,
令
,
,
令![]()
當
時,
,
單調(diào)遞減,且
;
當
時,
,
單調(diào)遞增;且
,
所以
在
上當單調(diào)遞減,在
上單調(diào)遞增,且
,
故
,
故
.
【點睛】本題考查利用函數(shù)的切線求參數(shù)的方法,以及利用導(dǎo)數(shù)證明不等式的方法,解題時要認真審題,注意導(dǎo)數(shù)性質(zhì)的合理運用.
【題型】解答題
【結(jié)束】
22
【題目】在平面直角坐標系
中,曲線
的參數(shù)方程為
(
,
為參數(shù)),以坐標原點
為極點,
軸正半軸為極軸建立極坐標系,直線
的極坐標方程為
,若直線
與曲線
相切;
(1)求曲線
的極坐標方程;
(2)在曲線
上取兩點
,
與原點
構(gòu)成
,且滿足
,求面積
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
是定義在
上的函數(shù),如果存在常數(shù)
,對區(qū)間
的任意劃分:
,和式
恒成立,則稱
為
上的“絕對差有界函數(shù)”,注:
.
(1)求證:函數(shù)
在
上是“絕對差有界函數(shù)”;
(2)記集合
存在常數(shù)
,對任意的
,有
成立.
求證:集合
中的任意函數(shù)
為“絕對差有界函數(shù)”;
(3)求證:函數(shù)
不是
上的“絕對差有界函數(shù)”.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】計劃在某水庫建一座至多安裝3臺發(fā)電機的水電站,過去50年的水文資料顯示,水庫年入流量X(年入流量:一年內(nèi)上游來水與庫區(qū)降水之和.單位:億立方米)都在40以上,其中,不足80的年份有10年,不低于80且不超過120的年份有35年,超過120的年份有5年,將年入流量在以上三段的頻率作為相應(yīng)段的概率,假設(shè)各年的年入流量相互獨立.
(1)求未來4年中,至多有1年的年入流量超過120的概率;
(2)水電站希望安裝的發(fā)電機盡可能運行,但每年發(fā)電機最多可運行臺數(shù)受年入流量X限制,并有如下關(guān)系:
年入流量X | 40<X<80 | 80≤X≤120 | X>120 |
發(fā)電機最多可運行臺數(shù) | 1 | 2 | 3 |
若某臺發(fā)電機運行,則該臺年利潤為5000萬元,若某臺發(fā)電機未運行,則該臺年虧損800萬元,欲使水電站年總利潤的均值達到最大,應(yīng)安裝發(fā)電機多少臺?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點p(1,m)在拋物線
上,F為焦點,且
.
(1)求拋物線C的方程;
(2)過點T(4,0)的直線
交拋物線C于A,B兩點,O為坐標原點,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法中正確的是
A. 先把高三年級的2000名學(xué)生編號:1到2000,再從編號為1到50的50名學(xué)生中隨機抽取1名學(xué)生,其編號為
,然后抽取編號為
的學(xué)生,這樣的抽樣方法是分層抽樣法
B. 線性回歸直線
不一定過樣本中心點![]()
C. 若兩個隨機變量的線性相關(guān)性越強,則相關(guān)系數(shù)
的值越接近于1
D. 若一組數(shù)據(jù)1、
、3的平均數(shù)是2,則該組數(shù)據(jù)的方差是![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com