【題目】已知函數(shù)f(x)=
在點(diǎn)(1,f(1))處的切線與x軸平行.
(Ⅰ)求實(shí)數(shù)a的值及f(x)的極值;
(Ⅱ)是否存在區(qū)間(t,t+
)(t>0),使函數(shù)f(x)在此區(qū)間上存在極值和零點(diǎn)?若存在,求實(shí)數(shù)t的取值范圍,若不存在,請(qǐng)說(shuō)明理由;
(Ⅲ)如果對(duì)任意的
,有|f(x1)﹣f(x2)|≥k|
|,求實(shí)數(shù)k的取值范圍.
【答案】解:(I)由f(x)=
,得
.
∵f(x)在點(diǎn)(1,f(1))處的切線與x軸平行,
∴
,
∴a=1,
∴
,x>0,
.
當(dāng)0<x<1時(shí),f′(x)>0,當(dāng)x>1時(shí),f′(x)<0.
∴f(x)在(0,1)上單調(diào)遞增,在(1,+∞)單調(diào)遞減,
故f(x)在x=1處取得極大值1,無(wú)極小值;
(Ⅱ)∵x>1時(shí),
,
當(dāng)x→0時(shí),y→﹣∞,
由(I)得f(x)在(0,1)上單調(diào)遞增,
∴由零點(diǎn)存在原理,f(x)在區(qū)間(0,1)存在唯一零點(diǎn),函數(shù)f(x)的圖象如圖所示:![]()
∵函數(shù)f(x)在區(qū)間(t,t+
),t>0上存在極值和零點(diǎn).
∴
,解得
.
∴存在符合條件的區(qū)間,實(shí)數(shù)t的取值范圍為(
);
( III)由(I)的結(jié)論知,f(x)在[e2 , +∞)上單調(diào)遞減,
不妨設(shè)
,則|f(x1)﹣f(x2)|≥k|
|,則
.
∴
.
∴函數(shù)F(x)=f(x)﹣
在[e2 , +∞)上單調(diào)遞減,
又
,
∴
在[e2 , +∞)上恒成立,
∴k≤lnx在[e2 , +∞)上恒成立.
在[e2 , +∞)上
,
k≤2.
【解析】(Ⅰ)由函數(shù)f(x)在(1,f(1))處的切線與x軸平行求得a的值,然后利用函數(shù)的導(dǎo)函數(shù)的符號(hào)求出函數(shù)的單調(diào)期間,則函數(shù)的極值可求;(Ⅱ)假設(shè)存在區(qū)間(t,t+
)(t>0),使函數(shù)f(x)在此區(qū)間上存在極值和零點(diǎn),則得到
,解此不等式組求得t的取值范圍;(Ⅲ)由(I)的結(jié)論知,f(x)在[e2 , +∞)上單調(diào)遞減,然后構(gòu)造函數(shù)F(x)=f(x)﹣
,由函數(shù)在[e2 , +∞)上單調(diào)遞減,則其導(dǎo)函數(shù)在在[e2 , +∞)上恒成立,由此求得實(shí)數(shù)k的取值范圍.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
,
.
(1)證明:
,直線
都不是曲線
的切線;
(2)若
,使
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,動(dòng)點(diǎn)P(x,y)到兩條坐標(biāo)軸的距離之和等于它到點(diǎn)(1,1)的距離,記點(diǎn)P的軌跡為曲線W,給出下列四個(gè)結(jié)論: ①曲線W關(guān)于原點(diǎn)對(duì)稱;
②曲線W關(guān)于直線y=x對(duì)稱;
③曲線W與x軸非負(fù)半軸,y軸非負(fù)半軸圍成的封閉圖形的面積小于
;
④曲線W上的點(diǎn)到原點(diǎn)距離的最小值為2﹣
其中,所有正確結(jié)論的序號(hào)是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x3+x2f'(1).
(1)求f'(1)和函數(shù)x的極值;
(2)若關(guān)于x的方程f(x)=a有3個(gè)不同實(shí)根,求實(shí)數(shù)a的取值范圍;
(3)直線l為曲線y=f(x)的切線,且經(jīng)過(guò)原點(diǎn),求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在R上定義運(yùn)算:ab=ab+2a+b,則滿足x(x﹣2)<0的實(shí)數(shù)x的取值范圍為( )
A.(0,2)
B.(﹣2,1)
C.(﹣∞,﹣2)∪(1,+∞)
D.(﹣1,2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線y2=2px(p>0)的焦點(diǎn)為F,已知A,B為拋物線上的兩個(gè)動(dòng)點(diǎn),且滿足∠AFB=120°,過(guò)弦AB的中點(diǎn)M作拋物線準(zhǔn)線的垂線MN,垂足為N,則
的最大值為( )
A.2
B.![]()
C.1
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】知函數(shù)f(x)=31+|x|﹣
,則使得f(x)>f(2x﹣1)成立的x的取值范圍是( )
A.![]()
B.![]()
C.(﹣
,
)
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)=log3(1+x)﹣log3(1﹣x).
(1)判斷函數(shù)f(x)的奇偶性,并加以證明;
(2)已知函數(shù)g(x)=log
,當(dāng)x∈[
,
]時(shí),不等式 f(x)≥g(x)有解,求k的取值范圍.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com