【題目】某工廠生產(chǎn)某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)x千件,需另投入成本為C(x),當(dāng)年產(chǎn)量不足80千件時(shí),C(x)=
x2+10x(萬元).當(dāng)年產(chǎn)量不小于80千件時(shí),C(x)=51x+
-1 450(萬元).每件商品售價(jià)為0.05萬元.通過市場分析,該廠生產(chǎn)的商品能全部售完.
(1)寫出年利潤L(x)(萬元)關(guān)于年產(chǎn)量x(千件)的函數(shù)解析式;
(2)當(dāng)年產(chǎn)量為多少千件時(shí),該廠在這一商品的生產(chǎn)中所獲利潤最大?
【答案】(1)L(x)=
;(2)100千件.
【解析】
(1)根據(jù)題意,分段求得函數(shù)的解析式,即可求得
;
(2)根據(jù)(1)中所求,結(jié)合基本不等式,求得
的最大值即可.
(1)因?yàn)槊考唐肥蹆r(jià)為0.05萬元,則x千件商品銷售額為0.05×1 000x萬元,
依題意得:
當(dāng)0<x<80時(shí),L(x)=(0.05×1 000x)-
-250=-
+40x-250.
當(dāng)x≥80時(shí),L(x)=(0.05×1 000x)-
-250=1 200-
.
所以L(x)=![]()
(2)當(dāng)0<x<80時(shí),L(x)=-
+950.
此時(shí),當(dāng)x=60時(shí),L(x)取得最大值L(60)=950萬元.
當(dāng)x≥80時(shí),L(x)=1 200-
≤1 200-2
=1 200-200=1 000.
此時(shí)x=
,即x=100時(shí),L(x)取得最大值1 000萬元.
由于950<1 000,
所以當(dāng)年產(chǎn)量為100千件時(shí),該廠在這一商品生產(chǎn)中所獲利潤最大,
最大利潤為1 000萬元.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有下列四個(gè)命題:
(1)“若
,則
,
互為倒數(shù)”的逆命題;
(2)“面積相等的三角形全等”的否命題;
(3)“若
,則
有實(shí)數(shù)解”的逆否命題;
(4)“若
,則
”的逆否命題.
其中真命題為( )
A. (1)(2) B. (2)(3) C. (4) D. (1)(2)(3)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)求函數(shù)
的圖像在
處的切線方程與
的單調(diào)區(qū)間;
(2)設(shè)
是函數(shù)
的導(dǎo)函數(shù),試比較
與
的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
的頂點(diǎn)坐標(biāo)分別是
,
的外接圓為
.
(1)求圓
的方程;
(2)在圓
上是否存在點(diǎn)
,使得
?若存在,求點(diǎn)
的個(gè)數(shù):若不存在,說明理由;
(3)在圓
上是否存在點(diǎn)
,使得
?若存在,求點(diǎn)
的個(gè)數(shù):若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有3名男生、4名女生,在下列不同條件下,求不同的排列方法總數(shù).
(1)選5人排成一排;
(2)排成前后兩排,前排4人,后排3人;
(3)全體排成一排,甲不站排頭也不站排尾;
(4)全體排成一排,女生必須站在一起;
(5)全體排成一排,男生互不相鄰.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系
中,曲線
的參數(shù)方程為
(
為參數(shù)),以原點(diǎn)
為極點(diǎn),
軸正半軸為極軸,建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)求曲線
的普通方程與曲線
直角坐標(biāo)方程;
(2)設(shè)
為曲線
上的動(dòng)點(diǎn),求點(diǎn)
到
上點(diǎn)的距離的最小值,并求此時(shí)點(diǎn)
的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】丹麥數(shù)學(xué)家琴生(Jensen)是19世紀(jì)對(duì)數(shù)學(xué)分析做出卓越貢獻(xiàn)的巨人,特別是在函數(shù)的凸凹性與不等式方面留下了很多寶貴的成果,設(shè)函數(shù)
在
上的導(dǎo)函數(shù)為
,
在
上的導(dǎo)函數(shù)為
,若在
上
恒成立,則稱函數(shù)
在
上為“凸函數(shù)”,已知
在
上為“凸函數(shù)”,則實(shí)數(shù)
的取值范圍是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校舉行了一次考試,從學(xué)生中隨機(jī)選取了
人的成績作為樣本進(jìn)行統(tǒng)計(jì).已知這些學(xué)生的成績?nèi)吭?/span>
分至
分之間,現(xiàn)將成績按如下方式分成
組:第一組
,第二組
,.......,第六組
,并據(jù)此繪制了如圖所示的頻率分布直方圖.
![]()
(1)估計(jì)這次月考數(shù)學(xué)成績的平均分和眾數(shù);
(2)從成績大于等于
分的學(xué)生中隨機(jī)抽取
人,求至少有
名學(xué)生的成績在
內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標(biāo)系
中,曲線
的參數(shù)方程為
(
為參數(shù)),以
軸的非負(fù)半軸為極軸,原點(diǎn)
為極點(diǎn)建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的長度單位,若直線
和
分別與曲線
相交于
、
兩點(diǎn)(
,
兩點(diǎn)異于坐標(biāo)原點(diǎn)).
(1)求曲線
的普通方程與
、
兩點(diǎn)的極坐標(biāo);
(2)求直線
的極坐標(biāo)方程及
的面積.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com