【題目】一飲料店制作了一款新飲料,為了進行合理定價先進行試銷售,其單價
(元)與銷量
(杯)的相關(guān)數(shù)據(jù)如下表:
單價 | 8.5 | 9 | 9.5 | 10 | 10.5 |
銷量 | 120 | 110 | 90 | 70 | 60 |
(1)已知銷量
與單價
具有線性相關(guān)關(guān)系,求
關(guān)于
的線性回歸方程;
(2)若該款新飲料每杯的成本為8元,試銷售結(jié)束后,請利用(1)所求的線性回歸方程確定單價定為多少元時,銷售的利潤最大?(結(jié)果四舍五入保留到整數(shù))
附:線性回歸方程
中斜率和截距最小二乗法估計計算公式:
,
,
,
.
科目:高中數(shù)學 來源: 題型:
【題目】如圖是國家統(tǒng)計局于2020年1月9日發(fā)布的2018年12月到2019年12月全國居民消費價格的漲跌幅情況折線圖.(注:同比是指本期與同期作對比;環(huán)比是指本期與上期作對比.如:2019年2月與2018年2月相比較稱同比,2019年2月與2019年1月相比較稱環(huán)比)根據(jù)該折線圖,下列結(jié)論錯誤的是( )
A.2019年12月份,全國居民消費價格環(huán)比持平
B.2018年12月至2019年12月全國居民消費價格環(huán)比均上漲
C.2018年12月至2019年12月全國居民消費價格同比均上漲
D.2018年11月的全國居民消費價格高于2017年12月的全國居民消費價格
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系
中,曲線C的參數(shù)方程為
(
為參數(shù)),以原點O為極點,x軸正半軸為極軸建立極坐標系,直線
的極坐標方程為
,且直線
與曲線C有兩個不同的交點.
(1)求實數(shù)a的取值范圍;
(2)已知M為曲線C上一點,且曲線C在點M處的切線與直線
垂直,求點M的直角坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,雙曲線
的兩頂點為
,
,虛軸兩端點為
,
,兩焦點為
,
,若以
為直徑的圓內(nèi)切于菱形
,切點分別為
,
,
,
.則
![]()
(1)雙曲線的離心率
______;
(2)菱形
的面積
與矩形
的面積
的比值
______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C:
(
)的焦距為4,其短軸的兩個端點與長軸的一個端點構(gòu)成正三角形.
(1)求橢圓C的標準方程;
(2)設(shè)F為橢圓C的左焦點,T為直線
上任意一點,過F作TF的垂線交橢圓C于點P,Q.
(i)證明:OT平分線段PQ(其中O為坐標原點);
(ii)當
最小時,求點T的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某百貨商店今年春節(jié)期間舉行促銷活動,規(guī)定消費達到一定標準的顧客可進行一次抽獎活動,隨著抽獎活動的有效開展,參與抽獎活動的人數(shù)越來越多,該商店經(jīng)理對春節(jié)前
天參加抽獎活動的人數(shù)進行統(tǒng)計,
表示第
天參加抽獎活動的人數(shù),得到統(tǒng)計表格如下:
| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| 5 | 8 | 8 | 10 | 14 | 15 | 17 |
(1)經(jīng)過進一步統(tǒng)計分析,發(fā)現(xiàn)
與
具有線性相關(guān)關(guān)系.請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出
關(guān)于
的線性回歸方程
;
(2)該商店規(guī)定:若抽中“一等獎”,可領(lǐng)取600元購物券;抽中“二等獎”可領(lǐng)取300元購物券;抽中“謝謝惠顧”,則沒有購物券.已知一次抽獎活動獲得“一等獎”的概率為
,獲得“二等獎”的概率為
.現(xiàn)有張、王兩位先生參與了本次活動,且他們是否中獎相互獨立,求此二人所獲購物券總金額
的分布列及數(shù)學期望.
參考公式:
,
,
,
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系
中,圓
的方程為
.以原點
為極點,
軸的非負半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(1)求
與
的交點的極坐標;
(2)設(shè)
是
的一條直徑,且
不在
軸上,直線
交
于
兩點,直線
交
于
兩點,求四邊形
的面積的最小值.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com