![]()
(Ⅰ)求證: ![]()
(Ⅱ)若
,直線AC與平面
所成的角為
,二面角![]()
![]()
![]()
本小題主要考查線面關(guān)系、直線與平面所成角、二面角等有關(guān)知識,考查空間想象能力和推理論證能力.
(Ⅰ)證明:如右圖,
過點A在平面A1ABB1內(nèi)作AD⊥A1B于D,則
由平面A1BC⊥側(cè)面A1ABB1,且平面A1BC∩側(cè)面A1ABB1=A1B,
得AD⊥平面A1BC.又BC
平面A1BC
所以AD⊥BC.
因為三棱柱ABC-A1B1C1是直三棱柱,
則AA1⊥底面ABC,所以AA1⊥BC.
又AA1∩AD=A,從而BC⊥側(cè)面A1ABB1,
又AB
側(cè)面A1ABB1,
故AB⊥BC.
(Ⅱ)證法1:連接CD,則由(Ⅰ)知∠ACD就是直線AC與平面A1BC所成的角,∠ABA1就是二面角A1-BC-A的平面角,即∠ACD=θ,∠ABA1=
.
于是在RtΔADC中,sinθ=
,在RtΔADA1中,sin∠A1AD=
,
∴sinθ=sin∠AA1D,由于θ與∠AA1D都是銳角,所以θ=∠AA1D.
又由RtΔA1AB知,∠A1AD+
=∠AA1B+
=
,故θ+
=
.
證法2:由(Ⅰ)知,以點B為坐標原點,以BC、BA、BB1所在的直線分別為x軸、y軸、z軸,建立如圖所示的空間直角坐標系. ![]()
設(shè)AB=c(c<a),則B(0,0,0),A(0,c,0),C(
),
A1(0,c,a),于是
,
=(0,c,a),
?
=(0,0,a)
設(shè)平面A1BC的一個法向量為n=(x,y,z),
則由![]()
可取n=(0,-a,c),于是
n·
=ac>0,
與n的夾角
為銳角,則
與
互為余角.
sin
=cos
=
,
cos
=![]()
所以sin
=cos
=sin(
),又0<
,
<
,所以
+
=
.
科目:高中數(shù)學(xué) 來源: 題型:
| 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆廣東省高二下期中理科數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,在直三棱柱
中, AB=1,
,
∠ABC=60
.
(1)證明:
;
(2)求二面角A—
—B的正切值。
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年天津市高三第二次月考文科數(shù)學(xué) 題型:解答題
(本小題滿分13分)如圖,在直三棱柱
中,
,
分別為
的中點,四邊形
是邊長為
的正方形.
(Ⅰ)求證:
平面
;
(Ⅱ)求證:
平面
;
(Ⅲ)求二面角
的余弦值.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年四川省高三2月月考理科數(shù)學(xué) 題型:解答題
如圖,在直三棱柱
中,
,
,
是
的中點.
(Ⅰ)求證:
∥平面
;
(Ⅱ)求二面角
的余弦值;
(Ⅲ)試問線段
上是否存在點
,使
與
成
角?若存在,確定
點位置,若不存在,說明理由.
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com