分析 利用分組分解法和配方法,可將原不等式化為$\frac{2}{x+1}$-x=$\frac{-(x-1)(x+2)}{x+1}$>0,再由零點(diǎn)分段法或標(biāo)根法,可得答案.
解答 解:$\frac{8}{(x+1)^{3}}$+$\frac{10}{x+1}$-x3-5x=($\frac{2}{x+1}$)3-x3+$\frac{10}{x+1}$-5x=($\frac{2}{x+1}$-x)[($\frac{2}{x+1}$)2+$\frac{2x}{x+1}$+x2+5]=($\frac{2}{x+1}$-x)[($\frac{2}{x+1}$$+\frac{x}{2}$)2+$\frac{3}{4}$x2+5],
∵($\frac{2}{x+1}$$+\frac{x}{2}$)2+$\frac{3}{4}$x2+5>0,
故原不等式可化為$\frac{2}{x+1}$-x=$\frac{-(x-1)(x+2)}{x+1}$>0,
即$\frac{(x-1)(x+2)}{x+1}$<0,
解得:x∈(-∞,-2)∪(-1,1)
點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是高次不等式的解法,分解因式,將高次不等式轉(zhuǎn)化為低次不等式,是解答的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | P>Q | B. | P<Q | ||
| C. | P=Q | D. | P與Q的大小不確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 2個(gè) | B. | 3個(gè) | C. | 4個(gè) | D. | 不確定 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com