如圖,在長方體
,中,
,點
在棱AB上移動.![]()
(1 )證明:
;
(2)當(dāng)
為
的中點時,求點
到面
的距離;
(3)
等于何值時,二面角
的大小為
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖1,在等腰梯形CDEF中,CB、DA是梯形的高,
,
,現(xiàn)將梯形沿CB、DA折起,使
且
,得一簡單組合體
如圖2示,已知
分別為
的中點.
![]()
圖1 圖2
(1)求證:
平面
;
(2)求證: ![]()
;
(3)當(dāng)
多長時,平面
與平面
所成的銳二面角為
?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖1,在等腰直角三角形
中,
,
,
分別是
上的點,
,
為
的中點.將
沿
折起,得到如圖2所示的四棱錐
,其中
.![]()
(Ⅰ) 證明:
平面
;
(Ⅱ) 求二面角
的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在三棱柱ABC-A1B1C1中,AA1C1C是邊長為4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.![]()
(Ⅰ)求證:AA1⊥平面ABC;
(Ⅱ)求二面角A1-BC1-B1的余弦值;
(Ⅲ)證明:在線段BC1存在點D,使得AD⊥A1B,并求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,ABCD是邊長為2的正方形,ED⊥平面ABCD, ED="1," EF//BD且2EF=BD.![]()
(1)求證:平面EAC⊥平面BDEF;
(2)求幾何體ABCDEF的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,在三棱錐PABC中,已知PC⊥平面ABC,點C在平面PBA內(nèi)的射影D在直線PB上.![]()
(1)求證:AB⊥平面PBC;
(2)設(shè)AB=BC,直線PA與平面ABC所成的角為45°,求異面直線AP與BC所成的角;
(3)在(2)的條件下,求二面角C-PA-B的余弦值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com