(本小題14分)設(shè)函數(shù)
.![]()
(Ⅰ)討論
的單調(diào)性;
(Ⅱ)已知
,若函數(shù)
的圖象總在直線
的下方,求
的取值范圍;
(Ⅲ)記
為函數(shù)
的導(dǎo)函數(shù).若
,試問:在區(qū)間
上是否存在
(![]()
)個(gè)正數(shù)
…
,使得
成立?請證明你的結(jié)論.
(1)當(dāng)
時(shí),
的遞增區(qū)間是
;當(dāng)
時(shí),
在
上單調(diào)遞增;在
上單調(diào)遞減
(2)
(3)存在,證明見解析
【解析】
試題分析:
(Ⅰ)
,
……2分
①當(dāng)
時(shí),
恒成立,故
的遞增區(qū)間是
; ……3分
②當(dāng)
時(shí),令
,則
.
當(dāng)
時(shí),
;當(dāng)
時(shí),
.
故
在
上單調(diào)遞增;在
上單調(diào)遞減;
……6分
(Ⅱ)由上述討論,當(dāng)
時(shí),
為函數(shù)
的唯一極大值點(diǎn),
所以
的最大值為
=
.
……8分
由題意有
,解得
.
所以
的取值范圍為
.
……10分
(Ⅲ)當(dāng)
時(shí),
. 記
,其中
.
∵當(dāng)
時(shí),
,∴
在
上為增函數(shù),
即
在
上為增函數(shù).
……12分
又
,所以,對(duì)任意的
,總有
.
所以
,
又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012121810245540472137/SYS201212181026072953824167_DA.files/image035.png">
,所以
.
故在區(qū)間
上不存在使得
成立的
(![]()
)個(gè)正數(shù)
…
.
……14分
考點(diǎn):本小題主要考查函數(shù)、導(dǎo)數(shù)等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、分類與整合思想及有限與無限思想.
點(diǎn)評(píng):對(duì)于題目條件較復(fù)雜,設(shè)問較多的題目審題時(shí),應(yīng)該細(xì)致嚴(yán)謹(jǐn),將題目條件條目化,一一分析,細(xì)心推敲.對(duì)于設(shè)問較多的題目,一般前面的問題較簡單,問題難度階梯式上升,先由條件將前面的問題正確解答,然后將前面問題的結(jié)論作為后面問題解答的條件,注意問題之間的相互聯(lián)系,使問題化難為易,層層解決.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(本小題14分)
設(shè)函數(shù)
,其中
.
(I)當(dāng)
時(shí),判斷函數(shù)
在定義域上的單調(diào)性;
(II)求函數(shù)
的極值點(diǎn);
(III)證明對(duì)任意的正整數(shù)
,不等式
都成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011年浙江省高二下學(xué)期第二次階段性考試文數(shù) 題型:解答題
(本小題14分)
設(shè)
是定義在
上的單調(diào)增函數(shù),滿足
,
(1)求
;
(2)若
,求
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題14分)
設(shè)函數(shù)y=f(x)的定義域?yàn)?0,+∞),且在(0,+∞)上單調(diào)遞增,若對(duì)任意x,y∈(0,+∞)都有:f(xy)=f(x)+f(y)成立,數(shù)列{an}滿足:a1=f(1)+1,
(1)求數(shù)列{an}的通項(xiàng)公式,并求Sn關(guān)于n的表達(dá)式;
(2)設(shè)函數(shù)g(x)對(duì)任意x、y都有:g(x+y)=g(x)+g(y)+2xy,若g(1)=1,正項(xiàng)數(shù)列{bn}滿足:,Tn為數(shù)列{bn}的前n項(xiàng)和,試比較4Sn與Tn的大小。
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com