欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

已知拋物線的焦點(diǎn)為,點(diǎn)是拋物線上的一點(diǎn),且其縱坐標(biāo)為4,
(1)求拋物線的方程;
(2) 設(shè)點(diǎn)是拋物線上的兩點(diǎn),的角平分線與軸垂直,求的面積最大時(shí)直線的方程.

(1);(2)

解析試題分析:(1)由于點(diǎn)是拋物線上的一點(diǎn),且其縱坐標(biāo)為4,假設(shè)點(diǎn),再通過(guò),可得一個(gè)關(guān)于的關(guān)系式,在結(jié)合拋物線方程即可求出.從而求得拋物線的方程.
(2)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/79/4/tx5g1.png" style="vertical-align:middle;" />的角平分線與軸垂直,所以可知的傾斜角互補(bǔ),即的斜率互為相反數(shù).所以假設(shè)直線PA,聯(lián)立拋物線方程即可得到點(diǎn)A的坐標(biāo),類(lèi)比地求出點(diǎn)B的坐標(biāo).結(jié)合韋達(dá)定理,可以得到直線AB的斜率為定值-1.通過(guò)假設(shè)直線AB的方程,聯(lián)立拋物線的方程,應(yīng)用點(diǎn)到直線的距離,即可表示三角形的面積.再通過(guò)求最值即能到結(jié)論.
(1)設(shè),因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/70/e/e5dsm3.png" style="vertical-align:middle;" />,由拋物線的定義得,又,所以,
因此,解得,從而拋物線的方程為
(2)由(1)知點(diǎn)的坐標(biāo)為,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/79/4/tx5g1.png" style="vertical-align:middle;" />的角平分線與軸垂直,所以可知的傾斜角互補(bǔ),即的斜率互為相反數(shù)
設(shè)直線的斜率為,則,由題意,
代入拋物線方程得,該方程的解為4、
由韋達(dá)定理得,即,同理,
所以
設(shè),把代入拋物線方程得
由題意,且,從而
,所以,點(diǎn)的距離,
因此,設(shè)
,
,所以上為增函數(shù),因此,
面積的最大值為
的面積取最大值時(shí),所以直線的方程為
考點(diǎn):1.拋物線的性質(zhì).2.函數(shù)的最值.3.等價(jià)變換.4.圓錐曲線與函數(shù)知識(shí)的交匯.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分13分)如圖,分別過(guò)橢圓左右焦點(diǎn)、的動(dòng)直線相交于點(diǎn),與橢圓分別交于不同四點(diǎn),直線的斜率、、滿足.已知當(dāng)軸重合時(shí),,
(1)求橢圓的方程;
(2)是否存在定點(diǎn),使得為定值.若存在,求出點(diǎn)坐標(biāo)并求出此定值,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在直角坐標(biāo)平面上給定一曲線y2=2x,
(1)設(shè)點(diǎn)A的坐標(biāo)為,求曲線上距點(diǎn)A最近的點(diǎn)P的坐標(biāo)及相應(yīng)的距離|PA|.
(2)設(shè)點(diǎn)A的坐標(biāo)為(a,0),a∈R,求曲線上的點(diǎn)到點(diǎn)A距離的最小值dmin,并寫(xiě)出dmin=f(a)的函數(shù)表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖所示,已知橢圓E經(jīng)過(guò)點(diǎn)A(2,3),對(duì)稱(chēng)軸為坐標(biāo)軸,焦點(diǎn)F1,F(xiàn)2在x軸上,離心率e=,斜率為2的直線l過(guò)點(diǎn)A(2,3).

(1)求橢圓E的方程;
(2)在橢圓E上是否存在關(guān)于直線l對(duì)稱(chēng)的相異兩點(diǎn)?若存在,請(qǐng)找出;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,橢圓的離心率為,軸被曲線截得的線段長(zhǎng)等于的長(zhǎng)半軸長(zhǎng)。

(1)求,的方程;
(2)設(shè)軸的交點(diǎn)為M,過(guò)坐標(biāo)原點(diǎn)O的直線相交于點(diǎn)A,B,直線MA,MB分別與相交與D,E.
①證明:;
②記△MAB,△MDE的面積分別是.問(wèn):是否存在直線,使得=?請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的離心率為,短軸端點(diǎn)分別為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若,是橢圓上關(guān)于軸對(duì)稱(chēng)的兩個(gè)不同點(diǎn),直線軸交于點(diǎn),判斷以線段為直徑的圓是否過(guò)點(diǎn),并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知點(diǎn)A(3,2), 點(diǎn)P是拋物線y2=4x上的一個(gè)動(dòng)點(diǎn),F(xiàn)為拋物線的焦點(diǎn),求的最小值及此時(shí)P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的兩個(gè)焦點(diǎn)分別為,離心率.
(1)求橢圓的方程;
(2)若直線)與橢圓交于不同的兩點(diǎn)、,且線段 
的垂直平分線過(guò)定點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,直線與拋物線(常數(shù))相交于不同的兩點(diǎn)、,且為定值),線段的中點(diǎn)為,與直線平行的切線的切點(diǎn)為(不與拋物線對(duì)稱(chēng)軸平行或重合且與拋物線只有一個(gè)公共點(diǎn)的直線稱(chēng)為拋物線的切線,這個(gè)公共點(diǎn)為切點(diǎn)).

(1)用表示出點(diǎn)、點(diǎn)的坐標(biāo),并證明垂直于軸;
(2)求的面積,證明的面積與、無(wú)關(guān),只與有關(guān);
(3)小張所在的興趣小組完成上面兩個(gè)小題后,小張連、,再作與平行的切線,切點(diǎn)分別為、,小張馬上寫(xiě)出了、的面積,由此小張求出了直線與拋物線圍成的面積,你認(rèn)為小張能做到嗎?請(qǐng)你說(shuō)出理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案