【題目】已知拋物線
上橫坐標(biāo)為
的點(diǎn)到焦點(diǎn)的距離為
.
(1)求拋物線
的方程;
(2)若過(guò)點(diǎn)
的直線與拋物線交于不同的兩點(diǎn)
,且以
為直徑的圓過(guò)坐標(biāo)原點(diǎn)
,求
的面積。
【答案】(1)
;(2)![]()
【解析】試題分析:(1)由拋物線
上橫坐標(biāo)為
的點(diǎn)到焦點(diǎn)的距離為
可得
解得
,從而可得拋物線
的方程;(2)先討論直線斜率不存在時(shí)的情況,當(dāng)斜率存在時(shí),設(shè)直線方程為
聯(lián)立
,消去
得
,根據(jù)韋達(dá)定理、平面向量數(shù)量積公式以及弦長(zhǎng)公式、點(diǎn)到直線距離公式與三角形面積公式可求得
的面積.
試題解析:(1)依題意:
解得
,所以拋物線的方程為
(2)依題意:若直線斜率不存在時(shí),直線與拋物線只有一個(gè)交點(diǎn),不符合題意;
所以設(shè)直線方程為![]()
聯(lián)立
,消去
得 ![]()
所以![]()
又![]()
因?yàn)橐?/span>
為直徑的圓過(guò)坐標(biāo)原點(diǎn),所以
, ![]()
所以
![]()
解得
,由
,點(diǎn)
到直線
的距離為![]()
所以
。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)公差不為零的等差數(shù)列{an}的前5項(xiàng)的和為55,且a2 ,
﹣9成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式.
(2)設(shè)數(shù)列bn=
,求證:數(shù)列{bn}的前n項(xiàng)和Sn<
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下圖是根據(jù)調(diào)查結(jié)果繪制的兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖提供的信息解答以下問(wèn)題:
![]()
(1)本次一共調(diào)查了多少名學(xué)生.(2)在圖(1)中將②對(duì)應(yīng)的部分補(bǔ)充完整.
(3)若該校有3 000名學(xué)生,你估計(jì)全校有多少名學(xué)生平均每天參加體育活動(dòng)的時(shí)間在0.5時(shí)以下?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在某城市氣象部門的數(shù)據(jù)中,隨機(jī)抽取100天的空氣質(zhì)量指數(shù)的監(jiān)測(cè)數(shù)據(jù)如表:
空氣質(zhì)量指數(shù)t | (0,50] | (50,100] | (100,150] | (150,200) | (200,300] | (300,+∞) |
質(zhì)量等級(jí) | 優(yōu) | 良 | 輕微污染 | 輕度污染 | 中度污染 | 嚴(yán)重污染 |
天數(shù)K | 5 | 23 | 22 | 25 | 15 | 10 |
(1)若該城市各醫(yī)院每天收治上呼吸道病癥總?cè)藬?shù)y與當(dāng)天的空氣質(zhì)量
(
取整數(shù))存在如下關(guān)系
且當(dāng)t>300時(shí),y>500,估計(jì)在某一醫(yī)院收治此類病癥人數(shù)超過(guò)200人的概率;
(2)若在(1)中,當(dāng)t>300時(shí),y與t的關(guān)系擬合的曲線為
,現(xiàn)已取出了10對(duì)樣本數(shù)據(jù)(ti,yi)(i=1,2,3,…,10),且知
試用可線性化的回歸方法,求擬合曲線的表達(dá)式.(附:線性回歸方程
中,
,
.)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商品一年內(nèi)出廠價(jià)格在6元的基礎(chǔ)上按月份隨正弦曲線波動(dòng),已知3月份達(dá)到最高價(jià)格8元,7月份價(jià)格最低為4元,該商品在商店內(nèi)的銷售價(jià)格在8元基礎(chǔ)上按月份隨正弦曲線波動(dòng),5月份銷售價(jià)格最高為10元,9月份銷售價(jià)最低為6元,假設(shè)商店每月購(gòu)進(jìn)這種商品m件,且當(dāng)月銷完,你估計(jì)哪個(gè)月份盈利最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
,
,函數(shù)
,若
的圖象上相鄰兩條對(duì)稱軸的距離為
,圖象過(guò)點(diǎn)
.
(1)求
表達(dá)式和
的單調(diào)增區(qū)間;
(2)將函數(shù)
的圖象向右平移
個(gè)單位,再將圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),得到函數(shù)
的圖象,若函數(shù)
在區(qū)間
上有且只有一個(gè)零點(diǎn),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義在R上的函數(shù)
,其中a為常數(shù).
(I)若x=1是函數(shù)
的一個(gè)極值點(diǎn),求a的值
(II)若函數(shù)
在區(qū)間(-1,0)上是增函數(shù),求a的取值范圍
(III)若函數(shù)
,在x=0處取得最大值,求正數(shù)a的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分
分)
已知半徑為
的圓的圓心在
軸上,圓心的橫坐標(biāo)是整數(shù),且與直線
相切.
(Ⅰ)求圓的方程.
(Ⅱ)設(shè)直線
與圓相交于
,
兩點(diǎn),求實(shí)數(shù)
的取值范圍.
(Ⅲ)在(Ⅱ)的條件下,是否存在實(shí)數(shù)
,使得點(diǎn)
到
,
兩點(diǎn)的距離相等,若存在,求出實(shí)數(shù)
的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com