函數(shù)f(x)=ax3-2bx2+cx+4d (a,b,c,d∈R)的圖象關(guān)于原點對稱,且x=1時,f(x)取極小值為-
.
(1)求a,b,c,d的值;
(2)證明:當(dāng)x∈[-1,1]時,圖象上不存在兩點使得過此兩點處的切線互相垂直;
(3)若x1,x2∈[-1,1]時,求證:|f(x1)-f(x2)|≤
.
(1)a=
,c=-1,b=0,d=0(2)證明略(3)證明略
(1)解 ∵函數(shù)f(x)的圖象關(guān)于原點對稱,
∴對任意實數(shù)x有f(-x)=-f(x),
∴-ax3-2bx2-cx+4d=-ax3+2bx2-cx-4d,
即bx2-2d=0恒成立.
∴b=0,d=0,∴f(x)=ax3+cx,f′(x)=3ax2+c.
∵x=1時,f(x)取極小值-
,
∴3a+c=0,a+c=-
.解得a=
,c=-1.
(2)證明 假設(shè)圖象上存在兩點A(x1,y1),B(x2,y2),使得過此兩點處的切線互相垂直,則由f′(x)=x2-1,知兩點處的切線斜率分別為k1=x
-1,k2=x
-1,且(x
-1)·(x
-1)=-1.(*)
∵x1,x2∈[-1,1],∴x
-1≤0,x
-1≤0,
∴(x
-1)·(x
-1)≥0.這與(*)式相矛盾,故假設(shè)不成立.
∴圖象上不存在符合條件的兩點.
(3)證明 令f′(x)=x2-1=0,則x=±1.
∴當(dāng)x∈(-∞,-1)或x∈(1,+∞)時,f′(x)>0;
x∈(-1,1)時f′(x)<0.
∴f(x)在[-1,1]上是減函數(shù),且f(x)max=f(-1)=
,
f(x)min=f(1)=-
.
∴在[-1,1]上,|f(x)|≤
,∴當(dāng)x1,x2∈[-1,1]時,
|f(x1)-f(x2)|≤|f(x1)|+|f(x2)|≤
+
=
.
科目:高中數(shù)學(xué) 來源: 題型:
| 3 | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
| 1 |
| 2 |
| 37 |
| 6 |
| 45 |
| 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
| 1 | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
|
| 45 |
| 2 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com