已知數(shù)列
滿足
且
,則數(shù)列
是
[ ]
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(07年上海卷理)(18分)
若有窮數(shù)列
(
是正整數(shù)),滿足
即
(
是正整數(shù),且
),就稱該數(shù)列為“對稱數(shù)列”。
(1)已知數(shù)列
是項(xiàng)數(shù)為7的對稱數(shù)列,且
成等差數(shù)列,
,試寫出
的每一項(xiàng)
(2)已知
是項(xiàng)數(shù)為
的對稱數(shù)列,且
構(gòu)成首項(xiàng)為50,公差為
的等差數(shù)列,數(shù)列
的前
項(xiàng)和為
,則當(dāng)
為何值時(shí),
取到最大值?最大值為多少?
(3)對于給定的正整數(shù)
,試寫出所有項(xiàng)數(shù)不超過
的對稱數(shù)列,使得
成為數(shù)列中的連續(xù)項(xiàng);當(dāng)
時(shí),試求其中一個(gè)數(shù)列的前2008項(xiàng)和![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年湖北省等八校高三第一次聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題
若數(shù)列
滿足
,則稱數(shù)列
為“平方遞推數(shù)列”.已知數(shù)列
中,
,點(diǎn)
在函數(shù)
的圖象上,其中
為正整數(shù).
(Ⅰ)證明數(shù)列
是“平方遞推數(shù)列”,且數(shù)列
為等比數(shù)列;
(Ⅱ)設(shè)(Ⅰ)中“平方遞推數(shù)列”的前
項(xiàng)積為
,即
,求
;
(Ⅲ)在(Ⅱ)的條件下,記
,求數(shù)列
的前
項(xiàng)和
,并求使
的
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分18分)本題共有3個(gè)小題,第1小題滿分6分,第2小題滿分7分,第3小題滿分5分.
在數(shù)列
(p為非零常數(shù)),則稱數(shù)列
為“等差比”數(shù)列,p叫數(shù)列
的“公差比”.
已知數(shù)列
滿足
,判斷該數(shù)列是否為等差比數(shù)列?
已知數(shù)列![]()
是等差比數(shù)列,且
公差比
,求數(shù)列
的通項(xiàng)公式
;
(3)記
為(2)中數(shù)列
的前n項(xiàng)的和,證明數(shù)列![]()
也是等差比數(shù)列,并求出公差比p的值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com