【題目】已知曲線
上任意一點(diǎn)
到直線
的距離是它到點(diǎn)
距離的2倍;曲線
是以原點(diǎn)為頂點(diǎn),
為焦點(diǎn)的拋物線.
(1)求
的方程;
(2)設(shè)過(guò)點(diǎn)
的直線與曲線
相交于
兩點(diǎn),分別以
為切點(diǎn)引曲線
的兩條切線
,設(shè)
相交于點(diǎn)
,連接
的直線交曲線
于
兩點(diǎn),求
的最小值.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
,
.
(1)討論函數(shù)
的單調(diào)性;
(2)對(duì)于任意
且
時(shí),不等式
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系
中,已知橢圓
過(guò)點(diǎn)
,且離心率
.
(1)求橢圓
的方程;
(2)直線
的斜率為
,直線
與橢圓
交于
、
兩點(diǎn),求
的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(Ⅰ)當(dāng)
時(shí),求曲線
在點(diǎn)
處的切線方程;
(Ⅱ)當(dāng)
時(shí),證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】影片《紅海行動(dòng)》里的“蛟龍突擊隊(duì)”在奉命執(zhí)行撤僑過(guò)程中,海軍艦長(zhǎng)要求隊(duì)員們依次完成6項(xiàng)任務(wù),并對(duì)任務(wù)的順序提出了如下要求:重點(diǎn)任務(wù)A必須排在第2位,且任務(wù)E、F必須排在一起,則這6項(xiàng)任務(wù)的不同安排方案共有( )
A.18種B.36種C.144種D.216種
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點(diǎn).
![]()
(1)證明:
平面AEC;
(2)設(shè)AP=1,AD=
,三棱錐P-ABD的體積V=
,求A到平面PBC的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示的幾何體
中,底面
為菱形,
,
,
與
相交于
點(diǎn),四邊形
為直角梯形,
,
,
,平面
底面
.
![]()
(1)證明:平面
平面
;
(2)求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,
、
是過(guò)點(diǎn)
夾角為
的兩條直線,且與圓心為
,半徑長(zhǎng)為
的圓分別相切,設(shè)圓周上一點(diǎn)
到
、
的距離分別為
、
,那么
的最小值為(____).
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)
是一個(gè)給定的非零實(shí)數(shù),在平面直角坐標(biāo)系
中,曲線
的方程為
且
,點(diǎn)
.
(1)設(shè)
是
上的任意一點(diǎn),試求線段
的中點(diǎn)
的軌跡
的方程并指出曲線
的類型和位置;
(2)求出
、
在它們的交點(diǎn)
處的各自切線之間的夾角
(銳角)(用反三角函數(shù)式表示)
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com