【題目】某電訊企業(yè)為了了解某地區(qū)居民對(duì)電訊服務(wù)質(zhì)量評(píng)價(jià)情況,隨機(jī)調(diào)查100 名用戶(hù),根據(jù)這100名用戶(hù)對(duì)該電訊企業(yè)的評(píng)分,繪制頻率分布直方圖,如圖所示,其中樣本數(shù)據(jù)分組為
,
,……
.
![]()
(1)估計(jì)該地區(qū)用戶(hù)對(duì)該電訊企業(yè)評(píng)分不低于70分的概率,并估計(jì)對(duì)該電訊企業(yè)評(píng)分的中位數(shù);
(2)現(xiàn)從評(píng)分在
的調(diào)查用戶(hù)中隨機(jī)抽取2人,求2人評(píng)分都在
的概率.
【答案】(1)
;77.14;(2)
.
【解析】
(1)由題意列出頻率分布表,求和即可估計(jì)該地區(qū)用戶(hù)對(duì)該電訊企業(yè)評(píng)分不低于70分的概率;利用中位數(shù)兩側(cè)的概率和相等列方程即可估計(jì)對(duì)該電訊企業(yè)評(píng)分的中位數(shù);
(2)由題意計(jì)算出受調(diào)查用戶(hù)評(píng)分在
、
的人數(shù),求出總的基本事件個(gè)數(shù)及滿(mǎn)足要求的基本事件的個(gè)數(shù),由古典概型概率公式即可得解.
(1)由題意,該地區(qū)用戶(hù)對(duì)該電訊企業(yè)評(píng)分的頻率分布如下表:
評(píng)分 |
|
|
|
|
|
|
頻率 | 0.04 | 0.06 | 0.20 | 0.28 | 0.24 | 0.18 |
因此可估計(jì)評(píng)分不低于70分的概率為
;
對(duì)該電訊企業(yè)評(píng)分的中位數(shù)設(shè)為x,可得
,
則
,
解得
,
所以可估計(jì)對(duì)該電訊企業(yè)評(píng)分的中位數(shù)為
;
(2)受調(diào)查用戶(hù)評(píng)分在
的有
人,
若編號(hào)依次為1,2,3,4,從中選2人的事件有
、
、
、
、
、
,
共有
個(gè)基本事件;
受調(diào)查用戶(hù)評(píng)分在
的有
人,
若編號(hào)依次為1,2,3,..9,10,從中選2人,
可得共有
個(gè)基本事件;
因此2人評(píng)分都在
的概率
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義在R上的偶函數(shù)f(x)在(﹣∞,0]上單調(diào)遞增,且f(﹣1)=﹣1.若f(x﹣1)+1≥0,則x的取值范圍是_____;設(shè)函數(shù)
若方程f(g(x))+1=0有且只有兩個(gè)不同的實(shí)數(shù)解,則實(shí)數(shù)a的取值范圍為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《高中數(shù)學(xué)課程標(biāo)準(zhǔn)》(2017版)規(guī)定了數(shù)學(xué)直觀(guān)想象學(xué)科的六大核心素養(yǎng),為了比較甲、乙兩名高二學(xué)生的數(shù)學(xué)核心素養(yǎng)水平,現(xiàn)以六大素養(yǎng)為指標(biāo)對(duì)二人進(jìn)行了測(cè)驗(yàn),根據(jù)測(cè)驗(yàn)結(jié)果繪制了雷達(dá)圖(如圖,每項(xiàng)指標(biāo)值滿(mǎn)分為5分,分值高者為優(yōu)),則下面敘述正確的是(注:雷達(dá)圖
,又可稱(chēng)為戴布拉圖、蜘蛛網(wǎng)圖
,可用于對(duì)研究對(duì)象的多維分析)( )
![]()
A.甲的直觀(guān)想象素養(yǎng)高于乙
B.甲的數(shù)學(xué)建模素養(yǎng)優(yōu)于數(shù)據(jù)分析素養(yǎng)
C.乙的數(shù)學(xué)建模素養(yǎng)與數(shù)學(xué)運(yùn)算素養(yǎng)一樣
D.乙的六大素養(yǎng)整體水平低于甲
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知平面上一動(dòng)點(diǎn)A的坐標(biāo)為
.
(1)求點(diǎn)A的軌跡E的方程;
(2)點(diǎn)B在軌跡E上,且縱坐標(biāo)為
.
(i)證明直線(xiàn)AB過(guò)定點(diǎn),并求出定點(diǎn)坐標(biāo);
(ii)分別以A,B為圓心作與直線(xiàn)
相切的圓,兩圓公共弦的中點(diǎn)為H,在平面內(nèi)是否存在定點(diǎn)P,使得
為定值?若存在,求出點(diǎn)P坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】
在四棱錐
中,側(cè)面
底面
,
,
為
中點(diǎn),底面
是直角梯形,
,
=90°,
,
.
(I)求證:![]()
平面
;
(II)求證:
平面
;
(III)設(shè)
為側(cè)棱
上一點(diǎn),
,試確定
的值,使得二面角
為45°.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
,
.
(1)求函數(shù)
在
處的切線(xiàn)方程;
(2)設(shè)![]()
①當(dāng)
時(shí),求函數(shù)
的單調(diào)區(qū)間;
②當(dāng)
時(shí),求函數(shù)
的極大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】骰子,古代中國(guó)民間娛樂(lè)用來(lái)投擲的博具,早在戰(zhàn)國(guó)時(shí)期就有.最常見(jiàn)的骰子是正六面體,也有正十四面體、球形十八面體等形制的骰子,如圖是滿(mǎn)城漢墓出土的銅煢,它是一個(gè)球形十八面體骰子,有十六面刻著一至十六數(shù)字,另兩面刻“驕”和“酒來(lái)”,其中“驕”表示最大數(shù)十七,“酒來(lái)”表示最小數(shù)零,每投一次,出現(xiàn)任何一個(gè)數(shù)字都是等可能的.現(xiàn)投擲銅煢三次觀(guān)察向上的點(diǎn)數(shù),則這三個(gè)數(shù)能構(gòu)成公比不為1的等比數(shù)列的概率為( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
的中心在原點(diǎn),左焦點(diǎn)
、右焦點(diǎn)
都在
軸上,點(diǎn)
是橢圓
上的動(dòng)點(diǎn),
的面積的最大值為
,在
軸上方使
成立的點(diǎn)
只有一個(gè).
(1)求橢圓
的方程;
(2)過(guò)點(diǎn)
的兩直線(xiàn)
,
分別與橢圓
交于點(diǎn)
,
和點(diǎn)
,
,且
,比較
與
的大。
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com