欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

10.在數(shù)列{an}中,a1=1,an+1=2an+1,猜想這個(gè)數(shù)列的通項(xiàng)公式是${a}_{n}={2}^{n}-1$.

分析 推導(dǎo)出{an+1}是首項(xiàng)為2,公比為2的等比數(shù)列,由此能求出這個(gè)數(shù)列的通項(xiàng)公式.

解答 解:∵在數(shù)列{an}中,a1=1,an+1=2an+1,
∴an+1+1=2(an+1),即$\frac{{a}_{n+1}+1}{{a}_{n}+1}=2$,
∵a1+1=2,∴{an+1}是首項(xiàng)為2,公比為2的等比數(shù)列,
∴${a}_{n}+1=2×{2}^{n-1}={2}^{n}$,
∴${a}_{n}={2}^{n}-1$.
故答案為:${a}_{n}={2}^{n}-1$.

點(diǎn)評(píng) 本查題考查數(shù)列的通項(xiàng)公式的求法,考查等比數(shù)列、構(gòu)造法等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.復(fù)數(shù)$\frac{1+i}{1-i}$=( 。
A.iB.-iC.2iD.-2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.下列說法:
①分類變量A與B的隨機(jī)變量K2越大,說明“A與B有關(guān)系”的可信度越大.
②以模型y=cekx去擬合一組數(shù)據(jù)時(shí),為了求出回歸方程,設(shè)z=lny,將其變換后得到線性方程z=0.3x+4,則c,k的值分別是e4和0.3.
③根據(jù)具有線性相關(guān)關(guān)系的兩個(gè)變量的統(tǒng)計(jì)數(shù)據(jù)所得的回歸直線方程為y=a+bx中,b=1,$\overline{x}$=1,$\overline{y}$=3,
則a=1.正確的序號(hào)是①②.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.不等式x-2y+4>0表示的區(qū)域在直線x-2y+4=0的( 。
A.左上方B.左下方C.右上方D.右下方

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若關(guān)于x的方程x2-mx+m=0沒有實(shí)數(shù)根,則實(shí)數(shù)m的取值范圍是(0,4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.對(duì)于函數(shù)f(x),若存在區(qū)間A=[m,n],使得{y|y=f(x),x∈A}=A,則稱函數(shù)f(x)為“可等域函數(shù)”,區(qū)間A為函數(shù)f(x)的一個(gè)“可等域區(qū)間”.給出下列四個(gè)函數(shù):
①f(x)=sin${\;}^{\frac{π}{2}}$x;②f(x)=2x2-1;③f(x)=|1-2x|
其中存在“可等域區(qū)間”的“可等域函數(shù)”為(  )
A.B.C.①②D.①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知命題p:指數(shù)函數(shù)f(x)=(m+1)x是減函數(shù);命題q:?x∈R,x2+x+m<0,若“p或q”是真命題,則實(shí)數(shù)m的取值范圍是$(-∞,\frac{1}{4})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知數(shù)列{an}滿足:a1=1,${a_{n+1}}=\frac{{2{a_n}}}{{{a_n}+2}}$(n∈N*),則數(shù)列{an}的通項(xiàng)公式為( 。
A.${a_n}=\frac{2}{n+1}$B.${a_n}=\frac{1}{n-1}$C.${a_n}=\frac{n}{n+1}$D.${a_n}=\frac{1}{n+1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知正項(xiàng)數(shù)列{an}與正項(xiàng)數(shù)列{bn}的前n項(xiàng)和分別為An和Bn,且對(duì)任意n∈N*,an+1-an=2(bn+1-bn)恒成立.
(1)若An=$\frac{1}{2}$(an-1)(an+2),n∈N*,求數(shù)列{an}的通項(xiàng)公式;
(2)在(1)的條件下,若b1=1,求Bn;
(3)若對(duì)任意n∈N*,恒有an=Bn及$\frac{_{2}}{{a}_{1}{a}_{2}}$+$\frac{_{3}}{{a}_{2}{a}_{3}}$+$\frac{_{4}}{{a}_{3}{a}_{4}}$+…+$\frac{_{n+1}}{{a}_{n}{a}_{n+1}}$<$\frac{1}{3}$成立,求實(shí)數(shù)b1的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案