設x,y∈R,則“xy>0”是“|x+y|=|x|+|y|”成立的( )
A.充分非必要條件
B.必要非充分條件
C.充分必要條件
D.既不充分又不必要條件
【答案】分析:由已知中x,y∈R,根據(jù)絕對值的性質(zhì),分別討論“xy>0”⇒“|x+y|=|x|+|y|”,與“|x+y|=|x|+|y|”⇒“xy>0”,的真假,然后根據(jù)充要條件的定義,即可得到答案.
解答:解:若“xy>0”,則x,y同號,則“|x+y|=|x|+|y|”成立
即“xy>0”是“|x+y|=|x|+|y|”成立的充分條件
但“|x+y|=|x|+|y|”成立時,x,y不異號,“xy≥0”,“xy>0”不一定成立,
即“xy>0”是“|x+y|=|x|+|y|”成立的不必要條件
即“xy>0”是“|x+y|=|x|+|y|”成立的充分不必要條件
故選A
點評:本題考查的知識點是充要條件,其中根據(jù)絕對值的性質(zhì),判斷“xy>0”⇒“|x+y|=|x|+|y|”,與“|x+y|=|x|+|y|”⇒“xy>0”的真假,是解答本題的關鍵.