| A. | (-∞,$\frac{\sqrt{e}}{e}$-8] | B. | [$\frac{\sqrt{e}}{e}$-8,+∞) | C. | [$\sqrt{2}$,e) | D. | (-$\frac{\sqrt{3}}{3}$,$\frac{e}{2}$] |
分析 對任意x1∈[$\frac{1}{2}$,2],存在x2∈[$\frac{1}{2}$,2],使f(x1)≤g(x2)成立,則[f(x)]max≤[g(x)]max,進而得到答案.
解答 解:對任意x1∈[$\frac{1}{2}$,2],存在x2∈[$\frac{1}{2}$,2],使f(x1)≤g(x2)成立,則[f'(x)]max≤[g(x)]max
f(x)=(x+1)2+a-1在[$\frac{1}{2}$,2]上單調(diào)遞增,
∴f(x)max=f(2)=8+a,
g(x)在∈[$\frac{1}{2}$,2]上單調(diào)遞減,則g(x)max=g($\frac{1}{2}$)=$\frac{1}{\sqrt{e}}$.
∴8+a≤$\frac{1}{\sqrt{e}}$則a≤$\frac{\sqrt{e}}{e}-8$.
故選:A
點評 本題考查的知識點是函數(shù)恒成立問題,函數(shù)的最值,利用導(dǎo)數(shù)法研究函數(shù)的最值,難度中檔.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 30° | B. | 60° | C. | 45° | D. | 135° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | (0,1) | B. | (0,1)∪(1,+∞) | C. | (1,+∞) | D. | (0,$\frac{1}{2}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{2π}{3}$ | B. | $\frac{5π}{6}$ | C. | $\frac{4π}{3}$ | D. | $\frac{7π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 1 | B. | 2 | C. | $\frac{1}{2}$ | D. | 22017 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com