【題目】設(shè)雙曲線
的左,右焦點(diǎn)分別為F1,F2,過F1的直線l交雙曲線左支于A,B兩點(diǎn),則|BF2|+|AF2|的最小值為( )
A.
B. 11
C. 12 D. 16
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐S﹣ABCD中,底面ABCD是邊長為2的正方形,SA=SB=SC=SD
,點(diǎn)E,M,N分別是BC,CD,SC的中點(diǎn),點(diǎn)P是MN上的一點(diǎn).
![]()
(1)證明:EP∥平面SBD;
(2)求四棱錐S﹣ABCD的表面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場舉行促銷活動(dòng),有兩個(gè)摸獎(jiǎng)箱,
箱內(nèi)有一個(gè)“
”號球、兩個(gè)“
”號球、三個(gè)“
”號球、四個(gè)無號球,
箱內(nèi)有五個(gè)“
”號球、五個(gè)“
”號球,每次摸獎(jiǎng)后放回,消費(fèi)額滿
元有一次
箱內(nèi)摸獎(jiǎng)機(jī)會,消費(fèi)額滿
元有一次
箱內(nèi)摸獎(jiǎng)機(jī)會,摸得有數(shù)字的球則中獎(jiǎng),“
”號球獎(jiǎng)
元、“
”號球獎(jiǎng)
元、“
”號球獎(jiǎng)
元,摸得無號球則沒有獎(jiǎng)金.
(Ⅰ)經(jīng)統(tǒng)計(jì),消費(fèi)額
服從正態(tài)分布
,某天有
為顧客,請估計(jì)消費(fèi)額
(單位:元)在區(qū)間
內(nèi)并中獎(jiǎng)的人數(shù);
(Ⅱ)某三位顧客各有一次
箱內(nèi)摸獎(jiǎng)機(jī)會,求其中中獎(jiǎng)人數(shù)
的分布列;
(Ⅲ)某顧客消費(fèi)額為
元,有兩種摸獎(jiǎng)方法,方法一:三次
箱內(nèi)摸獎(jiǎng)機(jī)會;方法二:一次
箱內(nèi)摸獎(jiǎng)機(jī)會,請問:這位顧客選哪一種方法所得獎(jiǎng)金的期望值較大.
附:若
,則![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(Ⅰ)若
在區(qū)間
上有極值,求實(shí)數(shù)
的取值范圍;
(Ⅱ)若
有唯一的零點(diǎn)
,試求
的值.(注:
為取整函數(shù),表示不超過
的最大整數(shù),如
;以下數(shù)據(jù)供參考:
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
兩縣城A和B相聚20km,現(xiàn)計(jì)劃在兩縣城外以AB為直徑的半圓弧
上選擇一點(diǎn)C建造垃圾處理廠,其對城市的影響度與所選地點(diǎn)到城市的的距離有關(guān),對城A和城B的總影響度為城A與城B的影響度之和,記C點(diǎn)到城A的距離為x km,建在C處的垃圾處理廠對城A和城B的總影響度為y,統(tǒng)計(jì)調(diào)查表明:垃圾處理廠對城A的影響度與所選地點(diǎn)到城A的距離的平方成反比,比例系數(shù)為4;對城B的影響度與所選地點(diǎn)到城B的距離的平方成反比,比例系數(shù)為k ,當(dāng)垃圾處理廠建在
的中點(diǎn)時(shí),對稱A和城B的總影響度為0.0065.(1)將y表示成x的函數(shù);(11)討論(1)中函數(shù)的單調(diào)性,并判斷弧
上是否存在一點(diǎn),使建在此處的垃圾處理廠對城A和城B的總影響度最?若存在,求出該點(diǎn)到城A的距離,若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,點(diǎn)
在曲線
上,且曲線在點(diǎn)
處的切線與直線
垂直.
(1)求
,
的值;
(2)如果當(dāng)
時(shí),都有
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為
=0.85x-85.71,則下列結(jié)論中不正確的是
A. y與x具有正的線性相關(guān)關(guān)系
B. 回歸直線過樣本點(diǎn)的中心(
,
)
C. 若該大學(xué)某女生身高增加1cm,則其體重約增加0.85kg
D. 若該大學(xué)某女生身高為170cm,則可斷定其體重比為58.79kg
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)向量a=(sinx-1,1),b=(sinx+3,1),c=(-1,-2),d=(k,1),k∈R.
(1)若x∈[-
,
],且a∥(b+c),求x的值;
(2)若存在x∈R,使得(a+d)⊥(b+c),求k的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com