【題目】已知函數(shù)
.
(1)
時(shí),證明:
;
(2)當(dāng)
時(shí),直線
和曲線
切于點(diǎn)
,求實(shí)數(shù)
的值;
(3)當(dāng)
時(shí),不等式
恒成立,求實(shí)數(shù)
的取值范圍.
【答案】(1)見解析;(2)
;(3)
.
【解析】【試題分析】(1)依據(jù)題設(shè)條件構(gòu)造函數(shù)
,運(yùn)用導(dǎo)數(shù)知識(shí)求出其最小值
,從而使得不等式獲證;(2)先設(shè)切點(diǎn)坐標(biāo)為
,
,然后建立方程組
,求得
.進(jìn)而得到
;(3)依據(jù)題設(shè)條件將不等式轉(zhuǎn)化為
恒成立, 進(jìn)而分離參數(shù)
,構(gòu)造函數(shù)
,將問題轉(zhuǎn)化為求函數(shù)
的最小值來求解:
解:(1)記
,
∵
,
令
得
,
當(dāng)
,
,
遞減;當(dāng)
,
,
遞增,
∴
,
,
得
.
(2)切點(diǎn)為
,
,則
,∴
,
∵
,∴
由(1)得
.
所以
.
(3)由題意可得
恒成立,
所以
,
下求
的最小值,
,
由(1)
知
且
.
所以
,
遞減,
∵
,∴
.
所以
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有5名男司機(jī),4名女司機(jī),需選派5人運(yùn)貨到吳忠.
(1)如果派3名男司機(jī)、2名女司機(jī),共有多少種不同的選派方法?
(2)至少有兩名男司機(jī),共有多少種不同的選派方法?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
.
(Ⅰ)若函數(shù)
為定義域上的單調(diào)函數(shù),求實(shí)數(shù)
的取值范圍;
(Ⅱ)若函數(shù)
存在兩個(gè)極值點(diǎn)
,
,且
,證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(Ⅰ)函數(shù)f(x)滿足對(duì)任意的實(shí)數(shù)x,y都有f(xy)=f(x)+f(y),且f(4)=2,求f(
)的值; (Ⅱ)已知函數(shù)f(x)是定義在[﹣1,1]上的奇函數(shù),且f(x)在[﹣1,1]上遞增,求不等式f(x+
)+f(x﹣1)<0
的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=f(x)的圖象是由y=sin2x向右平移
得到,則下列結(jié)論正確的是( )
A.f(0)<f(2)<f(4)
B.f(2)<f(0)<f(4)
C.f(0)<f(4)<f(2)
D.f(4)<f(2)<f(0)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4—4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為
(t為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,曲線C2:
.
(Ⅰ)求曲線C1和C2的直角坐標(biāo)方程,并分別指出其曲線類型;
(Ⅱ)試判斷:曲線C1和C2是否有公共點(diǎn)?如果有,說明公共點(diǎn)的個(gè)數(shù);如果沒有,請(qǐng)說明理由;
(Ⅲ)設(shè)
是曲線C1上任意一點(diǎn),請(qǐng)直接寫出a + 2b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
= x·ex,
,
,若對(duì)任意的
,都有
成立,則實(shí)數(shù)k的取值范圍是
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合A中含有三個(gè)元素3,x,x2﹣2x.
(1)求實(shí)數(shù)x應(yīng)滿足的條件;
(2)若﹣2∈A,求實(shí)數(shù)x.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com