【題目】已知函數(shù)
.
(Ⅰ)當
時,求函數(shù)
的極值;
(Ⅱ)
時,討論
的單調(diào)性;進一步地,若對任意的
,恒有
成立,求實數(shù)
的取值范圍.
【答案】(Ⅰ)極小值為
,無極大值;(Ⅱ)答案見解析.
【解析】試題分析:
(Ⅰ)函數(shù)的定義域為
.
,利用導函數(shù)研究函數(shù)的單調(diào)性可得:函數(shù)
的極小值為
,無極大值.
(Ⅱ)對函數(shù)求導
,令
,得
,
,
分類討論可得實數(shù)
的取值范圍是
.
試題解析:
(Ⅰ)函數(shù)
的定義域為
.
,
令
,得
;
(舍去).
當
變化時,
的取值情況如下:
|
|
|
|
| — | 0 |
|
| 減 | 極小值 | 增 |
所以,函數(shù)
的極小值為
,無極大值.
(Ⅱ)
,
令
,得
,
,
當
時,在區(qū)間
,
上,
,
單調(diào)遞減,
在區(qū)間
上,
,
單調(diào)遞增.
當
時,函數(shù)
在區(qū)間
單調(diào)遞減;
所以,當
時,
, ![]()
![]()
即
,
因為,
,所以,實數(shù)
的取值范圍是
.
科目:高中數(shù)學 來源: 題型:
【題目】已知圓
,一動圓與直線
相切且與圓
外切.
(1)求動圓圓心
的軌跡
的方程;
(2)若經(jīng)過定點
的直線
與曲線
交于
兩點,
是線段
的中點,過
作
軸的平行線與曲線
相交于點
,試問是否存在直線
,使得
,若存在,求出直線
的方程,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線
的參數(shù)方程是
(
是參數(shù)),以坐標原點為原點,
軸的正半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(1)判斷直線
與曲線
的位置關系;
(2)過直線
上的點作曲線
的切線,求切線長的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在直三棱柱ABC—A1B1C1中,AB=BC=BB1,
,D為AC上的點,B1C∥平面A1BD;
(1)求證:BD⊥平面
;
(2)若
且
,求三棱錐A-BCB1的體積.
![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了在夏季降溫和冬季供暖時減少能源損耗,房屋的屋頂和外墻需要建造隔熱層.某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元.該建筑物每年的能源消耗費用C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關系:C(x)=
(0≤x≤10),若不建隔熱層,每年能源消耗費用為8萬元.設f(x)為隔熱層建造費用與20年的能源消耗費用之和.
(1)求k的值及f(x)的表達式.
(2)隔熱層修建多厚時,總費用f(x)達到最小,并求最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的一段圖象如圖所示. ![]()
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的單調(diào)增區(qū)間;
(3)求函數(shù)f(x)在[﹣
,
]上的單調(diào)減區(qū)間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了解少年兒童的肥胖是否與常喝碳酸飲料有關,現(xiàn)對30名六年級學生進行了問卷調(diào)查得到如下列聯(lián)表:
常喝 | 不常喝 | 合計 | |
肥胖 | 2 | ||
不肥胖 | 18 | ||
合計 | 30 |
已知在全部30人中隨機抽取1人,抽到肥胖的學生的概率為
.
(1)請將上面的列表補充完整;
(2)是否有99.5%的把握認為肥胖與常喝碳酸飲料有關?說明你的理由;
(3)4名調(diào)查人員隨機分成兩組,每組2人,一組負責問卷調(diào)查,另一組負責數(shù)據(jù)處理,求工作人員甲分到負責收集數(shù)據(jù)組,工作人員乙分到負責數(shù)據(jù)處理組的概率.
參考數(shù)據(jù):
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:
)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】盒中有6只燈泡,其中有2只是次品,4只是正品.從中任取2只,試求下列事件的概率.
(1)取到的2只都是次品;
(2)取到的2只中恰有一只次品.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,點E在⊙O上,C為
的中點,過點C作直線CD⊥AE于D,連接AC、BC.![]()
(1)試判斷直線CD與⊙O的位置關系,并說明理由;
(2)若AD=2,AC=
,求AB的長.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com