欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

14.函數(shù)f(x)=x3-$\frac{a}{2}$x2-2a2x+$\frac{3}{2}$的圖象經(jīng)過(guò)四個(gè)象限,則a的取值范圍是(-∞,-$\frac{9\sqrt{11}}{22}$)∪(1,+∞).

分析 先求出函數(shù)的導(dǎo)數(shù),通過(guò)討論a的范圍,得到函數(shù)的單調(diào)性,結(jié)合函數(shù)圖象所在的象限,從而求出a的范圍.

解答 解:f′(x)=(3x+2a)(x-a),令f′(x)=0得:x=-$\frac{2a}{3}$,x=a,
當(dāng)a<0時(shí),f(x)在(-∞,a)和(-$\frac{2}{3}$a,+∞)上是增函數(shù),在(a,-$\frac{2}{3}$a)上是減函數(shù),
因?yàn)閒(0)=$\frac{3}{2}$>0,所以f(x)必過(guò)一、二、三象限,故只要f(x)極小值小于0即可.
f(-$\frac{2}{3}$a)<0的解為:a<-$\frac{9\sqrt{11}}{22}$,
同理,當(dāng)a>0時(shí),f(a)<0得:a>1.
綜上,a的取值范圍是(-∞,-$\frac{9\sqrt{11}}{22}$)∪(1,+∞),
故答案為:(-∞,-$\frac{9\sqrt{11}}{22}$)∪(1,+∞).

點(diǎn)評(píng) 本題考察了函數(shù)的單調(diào)性,考察導(dǎo)數(shù)的應(yīng)用,考察分類討論思想,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知拋物線C1:y2=2px(p>0)的焦點(diǎn)F與雙曲線C2:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的右焦點(diǎn)重合,C1與C2相交于點(diǎn) A,B.
(1)若A,F(xiàn),B三點(diǎn)共線,求雙曲線C2的離心率e;
(2)設(shè)點(diǎn)P為雙曲線C2上異于A,B的任一點(diǎn),直線AP、BP分別與x軸交于點(diǎn)M(m,0)和N(n,0),問(wèn):mn是否為定值?若為定值,請(qǐng)求出此定值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.某學(xué)校舉行知識(shí)競(jìng)賽,第一輪選拔共設(shè)有A,B,C,D四個(gè)問(wèn)題,規(guī)則如下:①每位參加者計(jì)分器的初始分均為10分,答對(duì)問(wèn)題A,B,C,D分別加1分,2分,3分,6分,答錯(cuò)任意題減2分;
②每答一題,計(jì)分器顯示累計(jì)分?jǐn)?shù),當(dāng)累積分?jǐn)?shù)小于8分時(shí),答題結(jié)束,淘汰出局;當(dāng)累積分?jǐn)?shù)大于或等于14分時(shí),答題結(jié)束,進(jìn)入下一輪;答完四題累計(jì)分?jǐn)?shù)不足14分時(shí),答題結(jié)束淘汰出局;
③每位參加者按A,B,C,D順序作答,直至答題結(jié)束.
假設(shè)甲同學(xué)對(duì)問(wèn)題A,B,C,D回答正確的概率依次為$\frac{3}{4}$,$\frac{1}{2}$,$\frac{1}{3}$,$\frac{1}{4}$,且各題回答正確與否相互之間沒(méi)有影響.(Ⅰ)求甲同學(xué)能進(jìn)入下一輪的概率;
(Ⅱ)用ξ表示甲同學(xué)本輪答題的個(gè)數(shù),求ξ的分布列和數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.如圖,四棱錐P-ABCD中,AD∥BC,AD⊥DC,AD=2BC=2CD=2,側(cè)面APD為等腰直角
三角形,PA⊥PD,平面PAD⊥底面ABCD,E為側(cè)棱PC上不同于端點(diǎn)的一點(diǎn).
(1)證明:PA⊥DE;
(2)試確定點(diǎn)E的位置,使二面角E-BD-C的余弦值為$\frac{{\sqrt{3}}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=ex-ax2-2x-1(x∈R).
(1)當(dāng)a=0時(shí),求f(x)的單調(diào)區(qū)間;
(2)求證:對(duì)任意實(shí)數(shù)a<0,有f(x)>$\frac{{{a^2}-a+1}}{a}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知各項(xiàng)均不相等的等差數(shù)列{an}的前五項(xiàng)和S5=20,且a1,a3,a7成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)Tn為數(shù)列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前n項(xiàng)和,若存在n∈N*,使得Tn-λan+1≥0成立.求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.點(diǎn)M(x,y)在直線x+y-10=0上,且x,y滿足-5≤x-y≤5,則$\sqrt{{x}^{2}+{y}^{2}}$的取值范圍是( 。
A.[0,$\frac{5\sqrt{10}}{2}$]B.[0,5$\sqrt{2}$]C.[5$\sqrt{2}$,$\frac{5\sqrt{10}}{2}$]D.[5,$\frac{5\sqrt{10}}{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.我們把中間位數(shù)上的數(shù)字最大面兩邊依次減小的多位數(shù)成為“凸數(shù)”.如132、341等,那么由1、2、3、4、5可以組成無(wú)理重復(fù)數(shù)字的三位凸數(shù)的個(gè)數(shù)是20(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.設(shè)a>0且a≠1.則“函數(shù)f(x)=logax是(0,+∞)上的增函數(shù)”是“函數(shù)g(x)=(1-a)•ax”是R上的減函數(shù)的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案