【題目】輪船A從某港口O要將一些物品送到正航行的輪船B上,在輪船A出發(fā)時(shí),輪船B位于港口O北偏西30°且與O相距20海里的P處,并正以15海里/時(shí)的航速沿正東方向勻速行駛,假設(shè)輪船A沿直線方向以v海里/時(shí)的航速勻速行駛,經(jīng)過t小時(shí)與輪船B相遇,
(1)若使相遇時(shí)輪船A航距最短,則輪船A的航行速度的大小應(yīng)為多少?
(2)假設(shè)輪船B的航行速度為30海里/時(shí),輪船A的最高航速只能達(dá)到30海里/時(shí),則輪船A以多大速度及沿什么航行方向行駛才能在最短時(shí)間內(nèi)與輪船B相遇,并說明理由.
【答案】(1)
海里/時(shí)(2) 航向?yàn)楸逼珫|30°,航速為30海里/時(shí)時(shí),輪船A能在最短時(shí)間內(nèi)與輪船B相遇,理由見解析
【解析】
(1)設(shè)相遇時(shí)輪船A航行的距離為s海里,利用余弦定理可得
,進(jìn)而求得距離的最小值,從而得到此時(shí)的航行速度;
(2)先畫出示意圖,再利用余弦定理整理可得速度與時(shí)間的關(guān)系,根據(jù)速度的范圍解得時(shí)間的最值,則可判斷示意圖中三角形的性質(zhì),進(jìn)而得到方向即可
(1)設(shè)相遇時(shí)輪船A航行的距離為s海里,則
![]()
![]()
∴當(dāng)
時(shí),
,此時(shí)
,
即輪船A以
海里/時(shí)的速度航行,相遇時(shí)輪船A航距最短
(2)航向?yàn)楸逼珫|30°,航速為30海里/時(shí)時(shí),輪船A能在最短時(shí)間內(nèi)與輪船B相遇,
設(shè)輪船A與輪船B在Q處相遇,如圖,
![]()
則
,即
,
∵
,∴
,即
,解得
,
又
時(shí),
,
∴
時(shí),t最小且為
,
此時(shí)在△POQ中
,
∴航向?yàn)楸逼珫|30°,航速為30海里/時(shí)時(shí),輪船A能在最短時(shí)間內(nèi)與輪船B相遇
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知
為橢圓
的左焦點(diǎn),且橢圓
過
.
(Ⅰ)求橢圓
的方程;
(Ⅱ) 是否存在平行四邊形
,同時(shí)滿足下列兩個(gè)條件:
①點(diǎn)
在直線
上;②點(diǎn)
在橢圓
上且直線
的斜率等于1.如果存在,求出
點(diǎn)坐標(biāo);如果不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商品要了解年廣告費(fèi)
(單位:萬元)對(duì)年利潤
(單位:萬元)的影響,對(duì)近4年的年廣告費(fèi)
和年利潤
數(shù)據(jù)作了初步整理,得到下面的表格:
廣告費(fèi) | 2 | 3 | 4 | 5 |
年利潤 | 26 | 39 | 49 | 54 |
(Ⅰ)用廣告費(fèi)作解釋變量,年利潤作預(yù)報(bào)變量,建立
關(guān)于
的回歸直線方程;
(Ⅱ)根據(jù)(Ⅰ)的結(jié)果預(yù)報(bào)廣告費(fèi)用為6萬元時(shí)的年利潤.
附:對(duì)于一組數(shù)據(jù)
,
,…,
,其回歸直線
的斜率和截距的最小二乘估計(jì)分別為:
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)當(dāng)
時(shí),
恒成立,求實(shí)數(shù)
的取值范圍;
(2)證明:當(dāng)
時(shí),函數(shù)
有最小值,設(shè)
最小值為
,求函數(shù)
的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】正六棱錐被過棱錐高的中點(diǎn)且平行于底的平面所截,得到正六棱臺(tái)和較小的棱錐.
![]()
(1)求大棱錐、小棱錐、棱臺(tái)的側(cè)面積之比;
(2)若大棱錐的側(cè)棱長為
,小棱錐的底面邊長為
,求截得的棱臺(tái)的側(cè)面積與全面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(Ⅰ)若函數(shù)
在
內(nèi)有極值,求實(shí)數(shù)
的取值范圍;
(Ⅱ)在(Ⅰ)的條件下,對(duì)任意
,
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)全集為R,集合A={x|-3<x<4},B={x|1≤x≤10}.
(1)求A∪B,A∩(RB);
(2)已知集合C={x|2a-1≤x≤a+1},若C∩A=C,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
且
是
的導(dǎo)函數(shù),則過曲線
上一點(diǎn)
的切線方程為
![]()
A.
B. ![]()
C.
或
D.
或![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知三棱錐P-ABC,D,E,F(xiàn)分別是棱PA,PB,PC的中點(diǎn).求證:平面DEF∥平面ABC.
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com