【題目】談祥柏先生是我國(guó)著名的數(shù)學(xué)科普作家,他寫的《數(shù)學(xué)百草園》、《好玩的數(shù)學(xué)》、《故事中的數(shù)學(xué)》等書,題材廣泛、妙趣橫生,深受廣大讀者喜愛(ài).下面我們一起來(lái)看《好玩的數(shù)學(xué)》中談老的一篇文章《五分鐘內(nèi)挑出埃及分?jǐn)?shù)》:文章首先告訴我們,古埃及人喜歡使用分子為1的分?jǐn)?shù)(稱為埃及分?jǐn)?shù)).如用兩個(gè)埃及分?jǐn)?shù)
與
的和表示
等.從
這100個(gè)埃及分?jǐn)?shù)中挑出不同的3個(gè),使得它們的和為1,這三個(gè)分?jǐn)?shù)是________.(按照從大到小的順序排列)
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知四棱柱
的底面
是正方形,側(cè)面
是矩形,
,
為
的中點(diǎn),平面
平面
.
![]()
(1)證明:
平面
;
(2)判斷二面角
是否為直二面角,不用說(shuō)明理由;
(3)求二面角
的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知?jiǎng)狱c(diǎn)
到定點(diǎn)
的距離之和為4.
(1)求動(dòng)點(diǎn)
的軌跡方程![]()
(2)若軌跡
與直線
交于
兩點(diǎn),且
求
的值.
(3)若點(diǎn)
與點(diǎn)
在軌跡
上,且點(diǎn)
在第一象限,點(diǎn)
在第二象限,點(diǎn)
與點(diǎn)
關(guān)于原點(diǎn)對(duì)稱,求證:當(dāng)
時(shí),三角形
的面積為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知中心為原點(diǎn)O,焦點(diǎn)在x軸上的橢圓C的離心率為
,且橢圓C的長(zhǎng)軸是圓
的一條直徑.
(1)求橢圓C的方程;
(2)若不過(guò)原點(diǎn)的直線l與橢圓C交于A,B兩點(diǎn),與圓M交于P、Q兩點(diǎn),且直線OA,AB,OB的斜率成等比數(shù)列,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
,
.
(1)求過(guò)點(diǎn)
且與曲線
相切的直線方程;
(2)設(shè)
,其中
為非零實(shí)數(shù),若
有兩個(gè)極值點(diǎn)
,且
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】西湖小學(xué)為了豐富學(xué)生的課余生活開(kāi)設(shè)課后少年宮活動(dòng),其中面向二年級(jí)的學(xué)生共開(kāi)設(shè)了三門課外活動(dòng)課:七巧板、健美操、剪紙.203班有包括奔奔、果果在內(nèi)的5位同學(xué)報(bào)名參加了少年宮活動(dòng),每位同學(xué)只能挑選一門課外活動(dòng)課,已知每門課都有人選,則奔奔和果果選擇了同一個(gè)課外活動(dòng)課的選課方法種數(shù)為( )
A.18B.36C.72D.144
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已過(guò)拋物線
:
的焦點(diǎn)
作直線
交拋物線
于
,
兩點(diǎn),以
,
兩點(diǎn)為切點(diǎn)作拋物線的切線,兩條直線交于
點(diǎn).
(1)當(dāng)直線
平行于
軸時(shí),求點(diǎn)
的坐標(biāo);
(2)當(dāng)
時(shí),求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知
,數(shù)列
的前n項(xiàng)和為
,且
;數(shù)列
的前n項(xiàng)和為
,且滿足
,且
.
(1)求數(shù)列
的通項(xiàng)公式;
(2)求數(shù)列
的通項(xiàng)公式;
(3)設(shè)
,問(wèn):數(shù)列
中是否存在不同兩項(xiàng)
,
(
,i,
),使
仍是數(shù)列
中的項(xiàng)?若存在,請(qǐng)求出i,j;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三角形
中,
,平面
與半圓弧
所在的平面垂直,點(diǎn)
為半圓弧上異于
的動(dòng)點(diǎn),
為
的中點(diǎn).
![]()
(1)求證:
;
(2)求三棱錐
體積的最大值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com