欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

16.直線y=2x+b是曲線y=xlnx(x>0)的一條切線,則實(shí)數(shù)b為-e.

分析 設(shè)切點(diǎn)為(x0,x0lnx0),對(duì)y=xlnx求導(dǎo)數(shù)得y′=lnx+1,從而得到切線的斜率k=lnx0+1,結(jié)合直線方程的點(diǎn)斜式化簡(jiǎn)得切線方程為y=(lnx0+1)x-x0,對(duì)照已知直線列出關(guān)于x0、m的方程組,解之即可得到實(shí)數(shù)m的值.

解答 解:設(shè)切點(diǎn)為(x0,x0lnx0),
對(duì)y=xlnx求導(dǎo)數(shù),得y′=lnx+1,
∴切線的斜率k=lnx0+1,
故切線方程為y-x0lnx0=(lnx0+1)(x-x0),
整理得y=(lnx0+1)x-x0,
與y=2x+b比較得lnx0+1=2且-x0=b,
解得x0=e,故b=-e.
故b的值為:-e.

點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的幾何意義,切線方程的求法,考查計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.銀川一中在高一、高二兩個(gè)年級(jí)學(xué)生中各抽取100人的樣本,進(jìn)行普法知識(shí)調(diào)查,其結(jié)果如表:
高一高二總計(jì)
合格人數(shù)70x150
不合格人數(shù)y2050
總計(jì)100100200
(1)求x,y的值.
(2)在犯錯(cuò)誤的概率不超過(guò)1%的情況下,是否認(rèn)為“高一、高二兩個(gè)年級(jí)這次普法知識(shí)調(diào)查結(jié)果有差異”?
參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知$cos(\frac{3}{2}π+α)={log_8}\frac{1}{4}$,且$α∈(-\frac{π}{2},0)$,求tan(2π-α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.下列結(jié)論:正確的序號(hào)是①③④.
①△ABC中,若A>B則一定有sinA>sinB成立;
②數(shù)列{an}的前n項(xiàng)和${S_n}={n^2}-2n+1$,則數(shù)列{an}是等差數(shù)列;
③銳角三角形的三邊長(zhǎng)分別為3,4,a,則a的取值范圍是$\sqrt{7}<a<5$;
④等差數(shù)列數(shù)列{an}的前n項(xiàng)和為Sn,已知a7+a8+a9+a10=24,則S16=96.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.在△ABC中,BC=20,tanB•tanC=$\frac{1}{4}$,AC=4$\sqrt{2}$,則cosA=$-\frac{3\sqrt{34}}{34}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.橢圓$\frac{x^2}{9}+\frac{y^2}{2}=1$的焦點(diǎn)為F1,F(xiàn)2,點(diǎn)P在橢圓上,若|PF1|=2,則∠F1PF2=( 。
A.30oB.60oC.120oD.150o

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.在△ABC中,A=30°,則$\sqrt{3}sinA-cos({B+C})$的值為(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\frac{{\sqrt{3}}}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)f(x)=lnx.
(1)若曲線g(x)=f(x)+$\frac{a}{x}$-1在點(diǎn)(2,g(2))處的切線與直線x+2y-1=0平行,求實(shí)數(shù)a的值;
(2)若m>n>0,求證$\frac{m-n}{m+n}$<$\frac{lnm-lnn}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知某幾何體的三視圖如圖所示,俯視圖是正方形,正視圖和側(cè)視圖都是底面邊長(zhǎng)為6,高為4的等腰三角形.
(1)求該幾何體的體積V;
(2)求該幾何體的表面積S.

查看答案和解析>>

同步練習(xí)冊(cè)答案