欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

5.已知函數(shù)f(x)=(x-a)2(x-b)(a,b∈R,a<b).
(1)當(dāng)a=1,b=2時,求曲線y=f(x)在點(2,f(2))處的切線方程;
(2)設(shè)x1,x2是f(x)的兩個極值點,x3是f(x)的一個零點,且x3≠x1,x3≠x2.證明:存在實數(shù)x4,使得x1,x2,x3,x4按某種順序排列后構(gòu)成等差數(shù)列,并求x4

分析 (1)求出函數(shù)的導(dǎo)數(shù),計算f(2),f′(2),求出切線方程即可;(2)求出函數(shù)f(x)的極值點,根據(jù)等差數(shù)列的性質(zhì)求出x4即可.

解答 解:(1)當(dāng)a=1,b=2時,因為f′(x)=(x-1)(3x-5),
故f′(2)=1,又f(2)=0,
所以f(x)在點(2,0)處的切線方程為y=x-2.
(2)證明:因為f′(x)=3(x-a)(x-$\frac{a+2b}{3}$),
由于a<b,故a<$\frac{a+2b}{3}$,
所以f(x)的兩個極值點為x=a或x=$\frac{a+2b}{3}$,
不妨設(shè)x1=a,x2=$\frac{a+2b}{3}$,
因為x3≠x1,x3≠x2,且x3是f(x)的零點,故x3=b,
又因為$\frac{a+2b}{3}$-a=2(b-$\frac{a+2b}{3}$),x4=$\frac{1}{2}$(a+$\frac{a+2b}{3}$)=$\frac{2a+b}{3}$,
此時a,$\frac{2a+b}{3}$,$\frac{a+2b}{3}$,b依次成等差數(shù)列,
所以存在實數(shù)x4滿足題意,且x4=$\frac{2a+b}{3}$.

點評 本題考查了切線方程問題,考查導(dǎo)數(shù)的應(yīng)用以及等差數(shù)列的性質(zhì),是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在平面直角坐標(biāo)系xOy中,已知點A(0,3),直線l:y=2x-4,設(shè)圓C的半徑為1,圓心C在直線l上;若動點M滿足:|MA|=2|MO|,且M的軌跡與圓C有公共點.求圓心C的橫坐標(biāo)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.雙曲線$\frac{{x}^{2}}{{m}^{2}+12}$-$\frac{{y}^{2}}{4-{m}^{2}}$=1的焦距是(  )
A.4B.6C.8D.與m有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)$f(x)=\frac{mx-6}{{{x^2}+n}}$的圖象在點P(-1,f(-1))處的切線方程為x+2y+5=0,求函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=|2x+1|+|3x-2|,且不等式f(x)≤5的解集為$\{x|-\frac{4a}{5}≤x≤\frac{3a}{5}\},a,b∈R$.
(1)求a,b的值;
(2)對任意實數(shù)x,都有|x-a|+|x+b|≥m2-3m成立,求實數(shù)m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知f1(x)=sin x+cos x,記f2(x)=f1′(x),f3(x)=f2′(x),…,fn(x)=fn-1′(x)(n∈N*,n≥2),則f1($\frac{π}{2}$)+f2($\frac{π}{2}$)+…+f2017($\frac{π}{2}$)=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在△ABC中,角A,B,C所對的邊分別為a,b,c,已知cosA=$\frac{1}{3}$.求sin(B+C)的值( 。
A.$\frac{{2\sqrt{2}}}{3}$B.-$\frac{1}{2}$C.0D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.把$-sinα+\sqrt{3}cosα$化成Asin(α+φ)(A>0,φ∈(0,2π))的形式為2sin($α+\frac{2π}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.如圖,A,B,C三個開關(guān)控制著1,2,3,4號四盞燈.若開關(guān)A控制著2,3,4號燈(即按一下開關(guān)A,2,3,4號燈亮,再按一下開關(guān)A,2,3,4號燈熄滅),同樣,開關(guān)B控制著1,3,4號燈,開關(guān)C控制著1,2,4號燈.開始時,四盞燈都亮著,那么下列說法正確的是(  )
A.只需要按開關(guān)A,C可以將四盞燈全部熄滅
B.只需要按開關(guān)B,C可以將四盞燈全部熄滅
C.按開關(guān)A,B,C可以將四盞燈全部熄滅
D.按開關(guān)A,B,C無法將四盞燈全部熄滅

查看答案和解析>>

同步練習(xí)冊答案