【題目】如圖,已知中心在原點(diǎn),焦點(diǎn)在x軸上的橢圓的一個(gè)焦點(diǎn)為(
,0),(1,
)是橢圓上的一個(gè)點(diǎn). ![]()
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)橢圓的上、下頂點(diǎn)分別為A,B,P(x0 , y0)(x0≠0)是橢圓上異于A(yíng),B的任意一點(diǎn),PQ⊥y軸,Q為垂足,M為線(xiàn)段PQ中點(diǎn),直線(xiàn)AM交直線(xiàn)l:y=﹣1于點(diǎn)C,N為線(xiàn)段BC的中點(diǎn),如果△MON的面積為
,求y0的值.
【答案】
(1)解:設(shè)橢圓方程為
,由題意,得
.
因?yàn)閍2﹣c2=b2,所以b2=a2﹣3.
又
是橢圓上的一個(gè)點(diǎn),所以
,解得a2=4或
(舍去),
從而橢圓的標(biāo)準(zhǔn)方程為 ![]()
(2)解:因?yàn)镻(x0,y0),x0≠0,則Q(0,y0),且
.
因?yàn)镸為線(xiàn)段PQ中點(diǎn),所以
.
又A(0,1),所以直線(xiàn)AM的方程為
.
因?yàn)閤0≠0,∴y0≠1,令y=﹣1,得
.
又B(0,﹣1),N為線(xiàn)段BC的中點(diǎn),有
.
所以
.
因此, ![]()
=
.從而OM⊥MN.
因?yàn)?
,
,
所以在Rt△MON中,
,因此
.
從而有
,解得 ![]()
【解析】(1)確定
,利用
是橢圓上的一個(gè)點(diǎn),代入求出a,即可求橢圓的標(biāo)準(zhǔn)方程;(2)求出M,N的坐標(biāo),利用平面向量的數(shù)量積判斷OM⊥MN,利用△MON的面積為
,建立方程,即可求y0的值.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)拋物線(xiàn)C:x2=2py(p>0)的焦點(diǎn)為F,準(zhǔn)線(xiàn)為l,A∈C,已知以F為圓心,F(xiàn)A為半徑的圓F交l于B,D兩點(diǎn);
(1)若∠BFD=90°,△ABD的面積為
,求p的值及圓F的方程;
(2)若A,B,F(xiàn)三點(diǎn)在同一直線(xiàn)m上,直線(xiàn)n與m平行,且n與C只有一個(gè)公共點(diǎn),求坐標(biāo)原點(diǎn)到m,n距離的比值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知某企業(yè)的近3年的前7個(gè)月的月利潤(rùn)(單位:百萬(wàn)元)如下面的折線(xiàn)圖所示: ![]()
(1)試問(wèn)這3年的前7個(gè)月中哪個(gè)月的月平均利潤(rùn)較高?
(2)通過(guò)計(jì)算判斷這3年的前7個(gè)月的總利潤(rùn)的發(fā)展趨勢(shì);
(3)試以第3年的前4個(gè)月的數(shù)據(jù)(如下表),用線(xiàn)性回歸的擬合模式估測(cè)第3年8月份的利潤(rùn).
月份x | 1 | 2 | 3 | 4 |
利潤(rùn)y(單位:百萬(wàn)元) | 4 | 4 | 6 | 6 |
相關(guān)公式:
=
=
,
=
﹣
x.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC中,角A、B、C所對(duì)的邊分別為a,b,c,且
= ![]()
(1)求A
(2)求cosB+cosC的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=(x﹣a)|x﹣a|+b,a,b∈R,則下列敘述中,正確的序號(hào)是( ) ①對(duì)任意實(shí)數(shù)a,b,函數(shù)y=f(x)在R上是單調(diào)函數(shù);
②對(duì)任意實(shí)數(shù)a,b,函數(shù)y=f(x)在R上都不是單調(diào)函數(shù);
③對(duì)任意實(shí)數(shù)a,b,函數(shù)y=f(x)的圖象都是中心對(duì)稱(chēng)圖象;
④存在實(shí)數(shù)a,b,使得函數(shù)y=f(x)的圖象不是中心對(duì)稱(chēng)圖象.
A.①③
B.②③
C.①④
D.③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若(x+
)n的展開(kāi)式中各項(xiàng)的系數(shù)之和為81,且常數(shù)項(xiàng)為a,則直線(xiàn)y=
x與曲線(xiàn)y=x2所圍成的封閉區(qū)域面積為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-5:不等式選講
已知函數(shù)f(x)=|x+2|﹣2|x﹣1|.
(Ⅰ)求不等式f(x)≥﹣2的解集M;
(Ⅱ)對(duì)任意x∈[a,+∞],都有f(x)≤x﹣a成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知△ABC的兩個(gè)頂點(diǎn)A,B的坐標(biāo)分別為(﹣1,0),(1,0),且AC、BC所在直線(xiàn)的斜率之積等于﹣2,記頂點(diǎn)C的軌跡為曲線(xiàn)E.
(1)求曲線(xiàn)E的方程;
(2)設(shè)直線(xiàn)y=2x+m(m∈R且m≠0)與曲線(xiàn)E相交于P、Q兩點(diǎn),點(diǎn)M(
,1),求△MPQ面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】解答題
(1)解不等式:|2x﹣1|﹣|x|<1;
(2)設(shè)f(x)=x2﹣x+1,實(shí)數(shù)a滿(mǎn)足|x﹣a|<1,求證:|f(x)﹣f(a)|<2(|a+1|)
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com